Set relations
Jump to Section
reflexive
reflexive if, for every element \(a \in A\) we have \(aRa \Rightarrow (a, a) \in R\)
- \( A = \{(a, a): a \in A\}\)
Symmetric
symmetric iff \((x,y) \in R \wedge (y,x) \in R\)
Transitive
Iff R relates \(a\) to \(b\) and \(b\) to \( c\) then \(a \) relates to \(c\)
- \(a < b < c \rightarrow a < c\)
- \(a = b = c \rightarrow a = c\)