Chapter 10 - Computer Arithmetic

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

Motivation

2 Arithmetic and Logic Unit

3 Integer representation

Sign-Magnitude Representation

Twos Complement Representation

Range Extension

Integer Arithmetic

Negation

Addition

Subtraction

Hardware Block Diagram for Adder

Multiplication

Unsigned Integers

Twos complement multiplication

5 Floating-point representation

Motivation

How can a computer perform arithmetic operations? Any ideas?

How can a computer perform arithmetic operations? Any ideas?

- Well, it depends on the type of numbers: integer and floating point;
- Representation is a crucial design issue...
 - Guess what we will be seeing next;)

Arithmetic and Logic Unit

What is the computer component responsible for calculations? Any ideas?

Arithmetic Logic Unit

- Component that performs arithmetic and logical operations;
- All other system components are there mainly to:
 - Bring data into the ALU;
 - Process data:
 - Take results back out;

What is the general organization of the ALU? Any ideas?

Very generally:

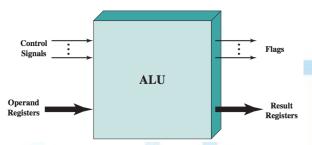


Figure: ALU Inputs and outputs (Source: (Stallings, 2015))

Textual description of the previous image (1/2):

- Operands for arithmetic/logic operations are provided in registers;
- Results of an operation are also stored in registers;
- ALU may also set flags as the result of an operation, e.g.:
 - Overflow flag is set to 1:
 - If a result exceeds the length of the register into which it is to be stored.
 - Zero flag is set to 1:
 - If a result produces value zero (JMP.Z, JMP.NZ, etc...)

Textual description of the previous image (2/2):

- Flags are also stored in registers within the processor.
- Processor provides signals that control:
 - ALU operation;
 - Data movement into and out of the ALU.

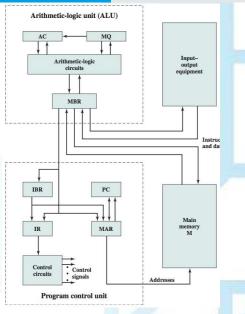


Figure: Expanded Structure of a computer (Source: (Stallings, 2015))

From the previous picture (1/2):

- Accumulator (AC) and Multiplier quotient (MQ):
 - Employed to hold temporarily operands and results of ALU operations
- Memory buffer register(MBR):
 - Contains a word to be stored in memory or sent to the I/O unit, or is used to receive a word from memory or from the I/O unit.
- Memory address register (MAR):
 - Specifies the address in memory of the word to be written from or read into the MBR.

From the previous picture (2/2):

- Instruction register (IR):
 - Contains the instruction being executed.
- Instruction buffer register (IBR):
 - Employed to hold the right-hand instruction from a word in memory.
- Program counter (PC)
 - Contains the address of the next instruction pair to be fetched from memory.

Integer representation

An *n*-bit sequence $a_{n-1}a_{n-2}\cdots a_0$ is an **unsigned** integer A:

$$A = \sum_{i=0}^{n-1} 2^i a_i$$

But what if we have to express negative numbers. Any ideas?

Sign-Magnitude Representation

The sign of a number can be represented using the **leftmost bit**:

- If bit is 0, the number is positive;
- If bit is 1, the number is negative;

$$+18 = 00010010$$
 $-18 = 10010010$ (sign magnitude)

$$A = \begin{cases} \sum_{i=0}^{n-2} 2^i a_i & \text{if } a_{n-1} = 0\\ -\sum_{i=0}^{n-2} 2^i a_i & \text{if } a_{n-1} = 1 \end{cases}$$

The number sign can be represented using the leftmost bit:

- If bit is 0: number is positive;
- If bit is 1: number is negative;

$$+18 = 00010010$$
 $-18 = 10010010$ (sign magnitude)

$$A = \begin{cases} \sum_{i=0}^{n-2} 2^i a_i & \text{if } a_{n-1} = 0\\ \sum_{i=0}^{n-2} 2^i a_i & \text{if } a_{n-1} = 1 \end{cases}$$

Can you see any problems with this method?

There are several problems in fact:

- Addition and subtraction operations require:
 - Considering both signs and the magnitudes of each number;
- There are two representations of 0:

$$+0_{10} = 00000000$$

 $-0_{10} = 10000000$ (sign magnitude)

- We need to test for two cases representing zero;
- This operation is frequently used in computers...
- Because of these drawbacks sign-magnitude representation is rarely use...

So what can we use to represent integers? Any ideas?

Twos Complement Representation

Twos Complement Representation

Like the sign magnitude system:

- uses the most significant bit as a sign bit;
- Easy to test whether an integer is positive or negative

However, it differs from the use of the sign-magnitude representation:

in the way that the other bits are interpreted.

Key characteristics of twos complement representation and arithmetic:

Range	-2^{n-1} through $2^{n-1}-1$
Number of Representations of Zero	One
Negation	Take the Boolean complement of each bit of the corresponding positive number, then add 1 to the resulting bit pattern viewed as an unsigned integer.
Expansion of Bit Length	Add additional bit positions to the left and fill in with the value of the original sign bit.
Overflow Rule	If two numbers with the same sign (both positive or both negative) are added, then overflow occurs if and only if the result has the opposite sign.
Subtraction Rule	To subtract B from A , take the two complement of B and add it to A .

Figure: Characteristics of twos complement representation and arithmetic (Source: (Stallings, 2015))

Consider an n-bit integer, A, in twos complement (1/3):

- If A is positive, then the sign bit, a_{n-1}, is zero;
- Remaining bits represent number magnitude:

$$A = \sum_{i=0}^{n-2} 2^i \alpha_i, \text{ for } A \ge 0$$



Consider an n-bit integer, A, in twos complement:

What is the maximum positive integer? An ideas?

Consider an n-bit integer, A, in twos complement (2/3):

What is the maximum positive integer? An ideas?

- Zero is identified as positive (zero sign bit) and a magnitude of all 0s;
- Range of positive integers that may be represented is:
 - from 0 (all of the magnitude bits are 0)...
 - through $2^{n-1} 1$ (all of the magnitude bits are 1).

Consider an n-bit integer, A, in twos complement:

What is the minimum positive integer? An ideas?

Consider an n-bit integer, A, in twos complement (3/3):

What is the minimum positive integer? An ideas?

- A negative number A has the sign bit, a_{n-1} , set to one:
 - Remaining n-1 bits can take on any one of 2^{n-1} values
 - Therefore, range is from -1 to -2^{n-1} ;

Ideally: negative numbers should facilitate arithmetic operations:

- Similar to unsigned integer arithmetic;
- In unsigned integer representation:
 - Weight of the most significant bit is $+2^{n-1}$;
- It turns out that with a sign bit desired arithmetic properties are achieved if:
 - Weight of the most significant bit is -2^{n-1} ;

This is the convention used in twos complement representation:

$$A = -2^{n-1}a_{n-1} + \sum_{i=0}^{n-1} 2^i a_i$$
 for $A < 0$

- For $a_{n-1} = 0$, then $-2^{n-1}a_{n-1} = 0$, i.e.:
 - Equation defines nonnegative integer;
- For $a_{n-1} = 1$, then the term -2^{n-1} is subtracted from the summation, i.e.:
 - yielding a negative integer

Decimal Representation	Sign-Magnitude Representation	Twos Complement Representation		
+8	==	_		
+7	0111	0111		
+6	0110	0110		
+5	0101	0101		
+4	0100	0100		
+3	0011	0011		
+2	0010	0010		
+1	0001	0001		
+0	0000	0000		
-0	1000	_		
-1	1001	1111		
-2	1010	1110		
-3	1011	1101		
-4	1100	1100		
-5	1101	1011		
-6	1110	1010		
-7	1111	1001		
-8	_	1000		

Figure: Alternative representations for 4 bit integers (Source: (Stallings, 2015))

Twos complement is a weird representation from the human perspective:

- However:
 - Facilitates addition and subtraction operations;
- For this reason:
 - It is almost universally used as the processor representation for integers;
 - It is also the representation used by the P3 processor employed in the lab;

Example

A useful illustration of twos complement:

-128	64	32	16	8	4	2	1

Figure: An eight-position twos complement value box (Source: (Stallings, 2015))

Example

A useful illustration of twos complement:

-128	64	32	16	8	4	2	1	
1	0	0	0	0	0	1	1	
-128						+2	+1	=-125

Figure: Convert binary 10000011 to decimal (Source: (Stallings, 2015))

Example

A useful illustration of twos complement:

	-128	64	32	16	8	4	2	1
	1	0	0	0	1	0	0	0
120 =	-128				+8			

Figure: Convert decimal -120 to binary (Source: (Stallings, 2015))

Range Extension

Sometimes it is desirable to take an *n*-bit integer and store it in *m*-bits:

- where m > n
- Easy in sign-magnitude notation:
 - move the sign bit to the new leftmost position and fill in with zeros.

```
+18 = 00010010 (sign magnitude, 8 bits)

+18 = 000000000010010 (sign magnitude, 16 bits)

-18 = 10010010 (sign magnitude, 8 bits)

-18 = 100000000010010 (sign magnitude, 16 bits)
```

But how will range extension work from two's complement perspective? Any ideas?

Can you see any potental problems? Any ideas?

Range Extension

Sometimes it is desirable to take an *n*-bit integer and store it in *m*-bits:

- where m > n
- Same procedure will not work for twos complement:

```
+18 = 00010010 (twos complement, 8 bits)

+18 = 0000000000010010 (twos complement, 16 bits)

-18 = 11101110 (twos complement, 8 bits)

-32,658 = 1000000001101110 (twos complement, 16 bits)
```

What can we do to solve this problem? Any ideas?

Rule for twos complement integers is:

- Move sign bit to leftmost position and fill in with copies of the sign bit, i.e.:
 - For positive numbers:
 - Fill in with zeros
 - For negative numbers:
 - Fill in with ones
- Example:

Negation

How can we negate a number in twos complement? Any ideas?

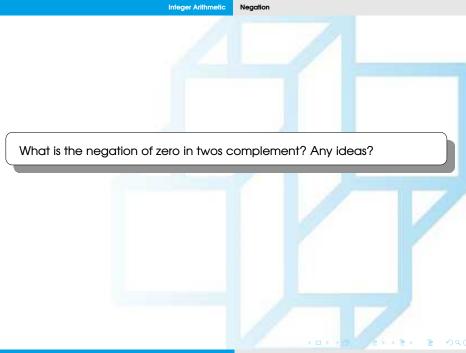
How can we negate a number in twos complement? Any ideas?

To negate an integer in twos complement notation:

- Complement each bit (including sign bit);
- 2 Add 1;
- 3 Example:

$$+18 = 00010010$$
 (twos complement)
bitwise complement = 11101101
+ 1
11101110 = -18

$$-18 = 11101110$$
 (twos complement)
bitwise complement = 00010001
 $+ 1 00010010 = +18$



What is the negation of zero in twos complement? Any ideas?

Consider A = 0. In that case, for an 8-bit representation:

```
0 = 00000000 (twos complement)
bitwise complement = 11111111
+ 1
1000000000 = 0
```

- Carry bit out of the most significant bit is ignored;
- The result is that the negation of 0 is 0;

What is the negation of 1 followed by n-1 zeros? Any ideas?

What is the negation of 1 followed by n-1 zeros? Any ideas?

• Negation of the bit pattern of 1 followed by n-1 zeros:

$$-128 = 10000000$$
 (twos complement)
bitwise complement = 01111111
 $\frac{+}{10000000} = -128$

Produces the same number

Why does this happen? Any ideas?

What is the negation of 1 followed by n-1 zeros? Any ideas?

• Negation of the bit pattern of 1 followed by n-1 zeros:

$$-128 = 10000000$$
 (twos complement)
bitwise complement = 011111111 $\frac{+ 1}{10000000} = -128$

Produces the same number

Why does this happen? Any ideas?

- Twos complement range: $[-2^{n-1}, 2^{n-1} 1]$;
- Negating 128 falls out of this range;

How can we add a number in twos complement? Any ideas?

Addition proceeds as if the two numbers were unsigned integers:

$$\begin{array}{rcl}
1001 & = & -7 \\
+\underline{0101} & = & 5 \\
1110 & = & -2
\end{array}$$
(a) (-7) + (+5)

Addition proceeds as if the two numbers were unsigned integers:

$$\begin{array}{rcl}
1100 &= -4 \\
+ \underline{0100} &= 4 \\
10000 &= 0
\end{array}$$
(b) (-4) + (+4)

Carry bit beyond (indicated by shading) is ignored;

Addition proceeds as if the two numbers were unsigned integers:

$$0011 = 3 + 0100 = 4 0111 = 7 (c) (+3) + (+4)$$

Addition proceeds as if the two numbers were unsigned integers:

$$1100 = -4
+ 1111 = -1
11011 = -5
(d) (-4) + (-1)$$

Carry bit beyond (indicated by shading) is ignored;

But what happens with this case? Any ideas?

$$+0101 \\ +0100 \\ \hline 1001$$

But what happens with this case? Any ideas?

$$0101 = 5 + 0100 = 4 1001 = Overflow$$
(e) (+5) + (+4)

Two numbers of the same sign produce a different sign...

But what happens with this case? Any ideas?

$$1001 + 1010 \\ 10011$$

But what happens with this case? Any ideas?

$$1001 = -7 + 1010 = -6 10011 = Overflow (f)(-7) + (-6)$$

Two numbers of the same sign produce a different sign...

Why do you think this happens? Any ideas?

Why do you think this happens? Any ideas?

- Overflow:
 - Result is larger that what can be stored with the word;
 - Solution: Increase word size:
 - When overflow occurs:
 - ALU must signal this fact so that no attempt is made to use the result.

Subtraction

How can we subtract a number in twos complement? Any ideas?

Subtraction

To subtract the **subtrahend** from the **minuend**:

- Take the twos complement of the subtrahend (S) and add it to the minuend (M).
 - M + (-S)
- I.e.: subtraction is achieved using addition;

$$0010 = 2 + 1001 = -7 1011 = -5$$

(a)
$$M = 2 = 0010$$

 $S = 7 = 0111$
 $-S = 1001$

Subtraction is achieved using addition: M+(-S)

$$\begin{array}{rcl}
0101 & = & 5 \\
+1110 & = & -2 \\
\hline
10011 & = & 3
\end{array}$$

(b)
$$M = 5 = 0101$$

 $S = 2 = 0010$
 $-S = 1110$

Carry bit beyond (indicated by shading) is ignored;

Subtraction is achieved using addition: M+(-S)

$$\begin{array}{r}
 1011 &= -5 \\
 + \underline{1110} &= -2 \\
 1001 &= -7
 \end{array}$$

(c)
$$M = -5 = 1011$$

 $S = 2 = 0010$
 $-S = 1110$

Carry bit beyond (indicated by shading) is ignored;

Subtraction is achieved using addition: $M+\left(-\mathcal{S}\right)$

$$\begin{array}{rcl}
0101 &=& 5 \\
+ & 0010 &=& 2 \\
\hline
0111 &=& 7
\end{array}$$

(d)
$$M = 5 = 0101$$

 $S = -2 = 1110$
 $-S = 0010$

Subtraction is achieved using addition: M+(-S)

$$0111 = 7$$

+ $0111 = 7$
 $1110 = 0$ overflow

(e)
$$M = 7 = 0111$$

 $S = -7 = 1001$
 $-S = 0111$

Overflow: two numbers of the same sign produce a different sign;

Subtraction is achieved using addition: M+(-S)

$$1010 = -6 + 1100 = -4 10110 = Overflow$$
(f) M = -6 = 1010
 S = 4 = 0100

- Carry bit beyond (indicated by shading) is ignored;
- Overflow: two numbers of the same sign produce a different sign;

-S = 1100

Hardware Block Diagram for Adder

So, the question now is:

How can we map these concepts into hardware? Any ideas?

Hardware Block Diagram for Adder

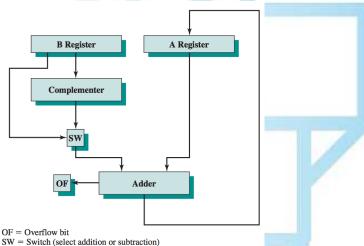


Figure: Block diagram of hardware for addition and subtraction (Source: (Stallings, 2015))

From the previous figure:

- Central element is a binary adder:
 - Presented with two inputs;
 - Produces a sum and an overflow indication;
- Adder treats the two numbers as unsigned integers
- For the addition operation:
 - The two numbers are presented in two registers;
 - Result may be stored in one of these registers or in a third;
- For the subtraction operation:
 - Subtrahend (B register) is passed through a twos complementer;
- Overflow indication is stored in a 1-bit overflow flag.

Multiplication

Multiplication is a complex operation:

- Compared with addition and subtraction;
- Again lets consider multiplying for the following cases:
 - Two unsigned numbers;
 - Two signed (twos complement) numbers;

Unsigned Integers

How can we perform multiplication? Any ideas?

1011 ×1101 How can we perform multiplication? Any ideas?

 $\begin{array}{c} 1011 \\ \times 1101 \\ \hline 0000 \\ 1011 \\ \hline 1011 \\ \hline 10001111 \\ \end{array} \begin{array}{c} \textbf{Multiplicand (11)} \\ \textbf{Multiplier (13)} \\ \textbf{Partial products} \\ \hline \textbf{Product (143)} \end{array}$

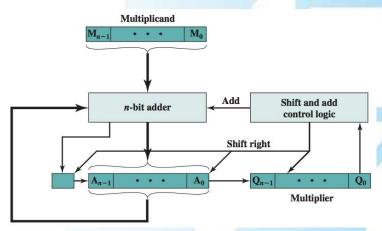
Several important observations:

- Multiplication involves the generation of partial products:
 - One for each digit in the multiplier;
 - These partial products are then summed to produce the final product.
- 2 The partial products are easily defined.
 - When the multiplier bit is 0, the partial product is 0;
 - When the multiplier is 1, the partial product is the multiplicand;
- 3 Total product is produced by summing the partial products:
 - each successive partial product is shifted one position to the left relative
- Multiplication of two n-bit binary integers produces up to 2n bits;

How can we translate these concepts into hardware? Any ideas?

- We can perform a running addition on the partial products:
 - Rather than waiting until the end;
 - Eliminates the need for storage of all the partial products;
 - Fewer registers are needed
- We can save some time on the generation of partial products:
 - For each 1 on the multiplier, an add and a shift operation are required
 - For each 0, only a shift is required.

Possible implementation employing these measures:



- Multiplier and multiplicand are loaded into two registers (Q and M);
- 2 A third register, the A register, is also needed and is initially set to 0;
- 3 There is also a 1-bit **C** register, initialized to 0:
 - which holds a potential carry bit resulting from addition.

- 4 Control logic then reads the bits of the multiplier one at a time:
 - If Q₀ is 1, then:
 - the multiplicand is added to the A register...
 - and the result is stored in the A register...
 - with the C bit used for overflow.
 - Then all of the bits of the C, A, and Q registers are shifted to the right one bit:
 - So that the C bit goes into A_{n-1} , A_0 goes into Q_{n-1} and Q_0 is lost.
 - If Q₀ is 0, then:
 - Then no addition is performed, just the shift;
 - Process is repeated for each bit of the original multiplier;
 - Resulting 2n-bit product is contained in the A and Q registers



Multiplicand (11) Multiplier (13)

Partial products

Product (143)

C A Q M 0 0000 1101 1011 Initial Values

Multiplicand (11) Multiplier (13) Partial products

Partial products
Product (143)

		100		
С	Α	Q	М	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add

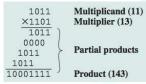
Multiplicand (11) Multiplier (13)

Partial products

Product (143)

С	Α	Q	М	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift Right

С	Α	Q	М	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift Right
0	0010	1111	1011	Shift



С	Α	Q	М	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift Right
0	0010	1111	1011	Shift
0	1101	1111	1011	Add

| 1011 | Mul | ×1101 | Mul | 1011 | 0000 | 1011 | 1011 | Part | 10001111 | Prod

Multiplicand (11) Multiplier (13) Partial products Product (143)

С	Α	Q	М	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift Right
0	0010	11111	1011	Shift
0	1101	11111	1011	Add
0	0110	1111	1011	Shift

С	Α	Q	М	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift Right
0	0010	1111	1011	Shift
0	1101	1111	1011	Add
0	0110	1111	1011	Shift
1	0001	1111	1011	Add

 $\begin{array}{c|c} 1011 \\ \times 1101 \\ \hline 0000 \\ 1011 \\ \hline 1011 \\ \hline 10001111 \\ \end{array} \begin{array}{c} \textbf{Multiplicand (11)} \\ \textbf{Multiplier (13)} \\ \textbf{Partial products} \\ \textbf{Product (143)} \end{array}$

	С	Α	Q	М	
	0	0000	1101	1011	Initial Values
ı	0	1011	1101	1011	Add
	0	0101	1110	1011	Shift Right
	0	0010	1111	1011	Shift
	0	1101	1111	1011	Add
	0	0110	1111	1011	Shift
	1	0001	1111	1011	Add
	0	1000	1111	1011	Shift

Or in flowchart form:



Figure: Flowchart for unsigned binary multiplication (Source: (Stallings, 2015))

Twos complement multiplication

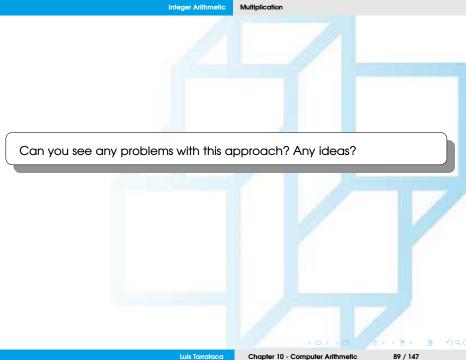
How can we perform multiplication using twos complement? Any ideas?

Product of two N-bit numbers requires maximum of 2N:

- Double operands precision using two's complement;
- For example, take $6 \times -5 = -30$
 - $\bullet \ \ 6_{(10)} = 0110_{(2)} = 00000110_{(2)}$
 - $\bullet \ \ -5_{(10)} = 1011_{(2)} = 111111011_{(2)}$

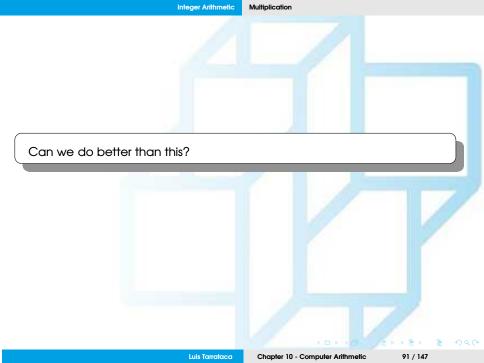
Figure: (Source: wikipedia)

Discarding the bits beyond the eighth bit will produce the correct result;



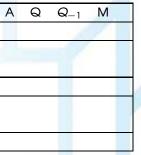
Very inefficient:

- Precision is doubled ahead of time;
- This means that all additions must be double-precision;
- Therefore twice as many partial products are needed...



Can we do better than this?

Yes we can through Booth's algorithm =)



Α	Q	Q_{-1}	M	
0000	0011	0	0111	Initial Values

Α	Q	Q_{-1}	M	
0000	0011	0	0111	Initial Values
1001	0011	0	0111	$A \leftarrow A - M$

Α	Q	Q_{-1}	М	
0000	0011	0	0111	Initial Values
1001	0011	0	0111	$A \leftarrow A - M$
1100	1001	1	0111	Arithmetic Shift Right

Α	Q	Q_{-1}	М	
0000	0011	0	0111	Initial Values
1001	0011	0	0111	$A \leftarrow A - M$
1100	1001	1	0111	Arithmetic Shift Right
1110	0100	1	0111	Arithmetic Shift Right

Α	Q	Q_{-1}	М	
0000	0011	0	0111	Initial Values
1001	0011	0	0111	$A \leftarrow A - M$
1100	1001	1	0111	Arithmetic Shift Right
1110	0100	1	0111	Arithmetic Shift Right
0101	0100	1	0111	$A \leftarrow A + M$

Α	Q	Q_{-1}	М	
0000	0011	0	0111	Initial Values
1001	0011	0	0111	$A \leftarrow A - M$
1100	1001	1	0111	Arithmetic Shift Right
1110	0100	1	0111	Arithmetic Shift Right
0101	0100	1	0111	$A \leftarrow A + M$
0010	1010	0	0111	Arithmetic Shift Right

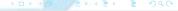
	М	Q_{-1}	Q	Α	
Initial Values	0111	0	0011	0000	
$A \leftarrow A - M$	0111	0	0011	1001	
Arithmetic Shift Right	0111	1	1001	1100	
Arithmetic Shift Right	0111	1	0100	1110	
$A \leftarrow A + M$	0111	1	0100	0101	
Arithmetic Shift Right	0111	0	1010	0010	
Arithmetic Shift Right	0111	0	0101	0001	

Example of Booth's Algorithm for: 7×3

Α	Q	Q_{-1}	М	
0000	0011	0	0111	Initial Values
1001	0011	0	0111	$A \leftarrow A - M$
1100	1001	1	0111	Arithmetic Shift Right
1110	0100	1	0111	Arithmetic Shift Right
0101	0100	1	0111	$A \leftarrow A + M$
0010	1010	0	0111	Arithmetic Shift Right
0001	0101	0	0111	Arithmetic Shift Right

Final result appears in the A and Q registers:

- A = 0001
- Q = 0101
- $AQ = 00010101_2 = 21_{10}$



- 1 Multiplier and multiplicand are placed in the Q and M registers;
- 2 Q_{-1} is a 1-bit register placed logically to the right of Q_0 ;
- 3 Results of the multiplication will appear in the A and Q registers;
- \bigcirc A and \bigcirc 1 are initialized to 0.

- 5 Control logic scans the bits of the multiplier one at a time:
 - as each bit is examined, the bit to its right is also examined;
 - If the two bits are the same (1-1 or 0-0):
 - all of the bits of the A, Q, and Q_{-1} registers are shifted to the right 1 bit.
 - If the two bits differ:
 - then the multiplicand is added/subtracted from the A register
 - depending on whether the two bits are 0-1 or 1-0.
 - Following the addition or subtraction, the right shift occurs.
 - All shifts performed preserve the sign:
 - Arithmetic Right Shift

In flowchart form:

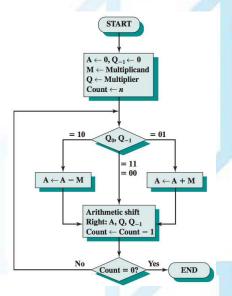
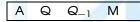


Figure: (Source: (Stallings, 2015))

Exercise

Use Booth's algorithm to multiply 23 (M) by 29 (Q):



Rules:

$$0 \rightarrow 1 = A = A + M$$
, Arithmetic Right Shift

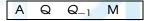
$$1 \rightarrow 0 = A = A + (-M)$$
, Arithmetic Right Shift

$$0 \rightarrow 0$$
 = Arithmetic Right Shift

$$1 \rightarrow 1$$
 = Arithmetic Right Shift

Exercise

Use Booth's algorithm to multiply 22 (M) by 28 (Q):



Rules:

$$0 \rightarrow 1 = A = A + M$$
, Arithmetic Right Shift

$$1 \rightarrow 0 = A = A + (-M)$$
, Arithmetic Right Shift

$$0 \rightarrow 0$$
 = Arithmetic Right Shift

$$1 \rightarrow 1$$
 = Arithmetic Right Shift

Seems complicated?

- That is because it is;
- Focus on performance not on human easiness to understand...
- Can be proved mathematically that works:
 - Beyond the scope of this class...
- Same concepts could be used to divise a division method:
 - Beyond the scope of this class...

Now that we have a basic understanding about:

- integer representation;
- integer arithmetic operations;

How can we represent floating-point numbers?

Important notice:

- Throughout computation history, several standards have been created:
 - IEEE 754-1985
 - IEEE 854-1987
 - IEEE 754-2008
- This means that it is difficult to present this material concisely;

Therefore: I only want you to have a basic notion of floating-point operations;)

Floating-point representation

We can represent decimal numbers in several ways, e.g.:

- 976,000,000,000,000 = 9.76×10^{14}
- $0.0000000000000976 = 9.76 \times 10^{-14}$

l.e. the decimal point floats to a convenient location:

- We use the exponent of 10 to keep track of the decimal point;
- This way we can represent large and small numbers with only a few digits;

Same approach can be taken with binary numbers, i.e.:

$$\pm \mathcal{S} imes \mathcal{B}^{\pm \mathcal{E}}$$

This number can be stored in a binary word with three fields:

- Sign: plus or minus
- Significand: S
- Exponent: E
- Base: B (binary)

In general:

Figure: Typical 32-Bit floating-point format (Source: (Stallings, 2015))

- Leftmost bit stores the sign of the number (0 = positive, 1 = negative)
- Exponent value is stored in the next k = 8 bits:
 - Fixed value is subtracted from the field to get the true value.
 - Value equals $2^{k-1} 1$
 - Range of possible values $[-(2^{k-1}-1), 2^{k-1}]$
- Significand: right portion of the word;

Example

Figure: Typical 32-Bit floating-point format (Source: (Stallings, 2015))

Example:

Biased exponent:

What is the decimal form of this number: 0 1001 0011 10100010000000000000000? Any ideas?

- 1.6328125 × 2²⁰
- $2^{-1} + 2^{-3} + 2^{-7} = 1.6328125$

Example

Figure: Typical 32-Bit floating-point format (Source: (Stallings, 2015))

Example:

Biased exponent:

What is the decimal form of this number:

1 1001 0011 10100010000000000000000? Any ideas?

- -1.6328125×2^{20}
- $2^{-1} + 2^{-3} + 2^{-7} = 1.6328125$

Example



Figure: Typical 32-Bit floating-point format (Source: (Stallings, 2015))

Example:

Biased exponent:

What is the decimal form of this number: 0 0110 1011 1010001000000000000000? Any ideas?

- 1.6328125×2^{-20}
- $2^{-1} + 2^{-3} + 2^{-7} = 1.6328125$

Example

Figure: Typical 32-Bit floating-point format (Source: (Stallings, 2015))

• Example:

Biased exponent:

What is the decimal form of this number:

1 11101101 10100010000000000000000? Any ideas?

What is the decimal form of this number: 1 11101101 10100010000000000000000? Any ideas?

- $-1.6328125 \times 2^{-20}$
- $2^{-1} + 2^{-3} + 2^{-7} = 1.6328125$

Figure: Typical 32-Bit floating-point format (Source: (Stallings, 2015))

Examples conclusion:

Floating-point Arithmetic

Now that we know how to represent floating-point numbers:

How can we perform floating-point arithmetic? Any ideas?

Some observations:

- Addition and subtraction operations:
 - Necessary to ensure that both operands have the same exponent value;
 - May require shifting the radix point to achieve alignment;
- Multiplication and division are more straightforward.

Floating-Point Numbers	Arithmetic Operations
$X = X_S \times B^{X_E} $ $Y = Y_S \times B^{Y_E}$	$X + Y = (X_s \times B^{X_E - Y_E} + Y_s) \times B^{Y_E}$ $X - Y = (X_s \times B^{X_E - Y_E} - Y_s) \times B^{Y_E}$ $X = (X_s \times B^{X_E - Y_E} - Y_s) \times B^{Y_E}$
	$X \times Y = (X_s \times Y_s) \times B^{X_E + Y_E}$ $\frac{X}{Y} = \left(\frac{X_s}{Y_s}\right) \times B^{X_E - Y_E}$

Figure: Floating point numbers and arithmetic operations (Source: (Stallings, 2015))

Example

$$X = 0.3 \times 10^{2} = 30$$

$$Y = 0.2 \times 10^{3} = 200$$

$$X + Y = (0.3 \times 10^{2-3} + 0.2) \times 10^{3} = 0.23 \times 10^{3} = 230$$

$$X - Y = (0.3 \times 10^{2-3} - 0.2) \times 10^{3} = 0.17 \times 10^{3} = -170$$

$$X \times Y = (0.3 \times 0.2) \times 10^{2+3} = 0.06 \times 10^{5} = 6000$$

$$X \div Y = (0.3 \div 0.2) \times 10^{2-3} = 1.5 \times 10^{-1} = 0.15$$

Can you see any type of problems that the operations might produce? Any ideas?

Floating-point operation may produce (1/2):

- Exponent overflow: Positive exponent exceeds maximum value;
- Exponent underflow: Negative exponent exceeds minimum value;
 - E.g.: -200 is less than -127.
 - Number is too small to be represented (reported as 0).

Can you see any type of problems that the operations might produce? Any ideas?

Floating-point operation may produce (2/2):

- Significand underflow: In the process of aligning significands, digits may flow off the right end of the significand.
- Significand overflow: The addition of two significands of the same sign may result in a carry out of the most significant bit

So now the question is

How can we perform addition/subtraction using floats? Any ideas?

Addition and Subtraction

In floating-point arithmetic:

- Addition/subtraction more complex than multiplication/division;
- This is because of the need for alignment;
- There are four basic phases of the algorithm for addition and subtraction:
 - Check for zeros.
 - 2 Align the significands.
 - 3 Add or subtract the significands.
 - Mormalize the result.

Lets have a look at each one of these...

Phase 1: Zero check:

- Addition and subtraction are identical except for a sign change:
 - Begin by changing the sign of the subtrahend if it is a subtract operation.
- If either operand is 0, the other is reported as the result.

Phase 2: Significand alignment (1/2):

- Manipulate numbers so that the two exponents are equal, e.g.:
 - $(123 \times 10^{0}) + (456 \times 10^{-2})$
 - Digits must first be set into equivalent positions, i.e.:
 - 4 of the second number must be aligned with the 3 of the first;
 - The two exponents need to be equal
 - Thus:
 - $(123 \times 10^{0}) + (456 \times 10^{-2}) = (123 \times 10^{0}) + (4.56 \times 10^{0}) = 127.56 \times 10^{0}$

Phase 2: Significand alignment (2/2):

- Alignment may be achieved by:
 - Shifting either the smaller number to the right (increasing its exponent)
 - Shifting the larger number to the left
 - Either operation may result in the loss of digits
 - Smaller number is usually shifted:
 - Since any digits lost are of small significance.
- In general terms:
 - Repeatedly shift the significand right 1 digit
 - and increment the exponent until the two exponents are equal.

Phase 3: Addition

- Significands are added together;
- Because the signs may differ: result may be 0;
- There is also the possibility of significand overflow, if so:
 - Significand of the result is shifted right and the exponent is incremented;
 - Exponent overflow could occur as a result;
 - Operation is halted.

Phase 4: Normalization

- Shift significand digits left until most significant digit is nonzero;
- Each shift causes:
 - a decrement of the exponent and...
 - ...thus could cause an exponent underflow.

In flowchart form:

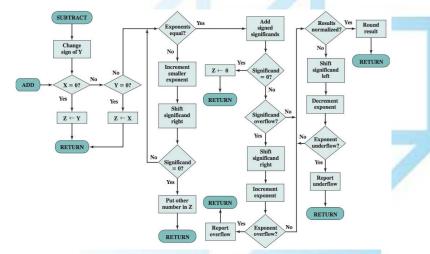


Figure: Floating Point Addition And Subtraction (Source: (Stallings, 2015))

So now the question is

How can we perform multiplication using floats? Any ideas?

Floating-Point Multiplication

- 1) If either operand is 0: 0 is reported as the result;
- 2 Add the exponents;
- Multiply the significands:
 - Similarly to twos complement multiplication.
- Result is normalized.

In flowchart form:

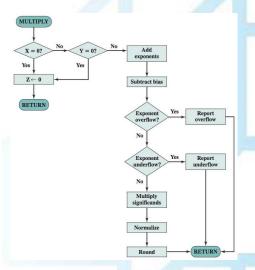


Figure: Floating Point Multiplication (Source: (Stallings, 2015))

So now the question is

How can we perform division using floats? Any ideas?

Floating-Point Division

- 1 Test for 0:
 - If the divisor is 0: report error;
 - Dividend is 0: results in 0.
- Oivisor exponent is subtracted from the dividend exponent;
- Oivide the significands;
- Result is normalized;

In flowchart form:

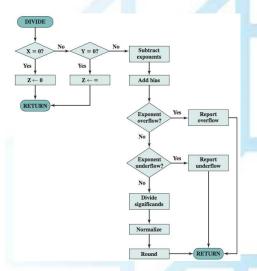


Figure: Floating Point Division (Source: (Stallings, 2015))

References I

Stallings, W. (2015).

Computer Organization and Architecture.

Pearson Education.