<u>Direct Mapping | Cache | Practice</u> <u>Problems</u> ## **Direct Mapping-** In direct mapping, - A particular block of main memory can be mapped to one particular cache line only. - Block 'j' of main memory will map to line number (j mod number of cache lines) of the cache. - There is no need of any replacement algorithm. In this article, we will discuss practice problems based on direct mapping. # PRACTICE PROBLEMS BASED ON DIRECT MAPPING- # Problem-01: Consider a direct mapped cache of size 16 KB with block size 256 bytes. The size of main memory is 128 KB. Find- - 1. Number of bits in tag - 2. Tag directory size # Solution- #### Given- - Cache memory size = 16 KB - Block size = Frame size = Line size = 256 bytes - Main memory size = 128 KB We consider that the memory is byte addressable. #### Number of Bits in Physical Address- We have, Size of main memory - = 128 KB - $= 2^{17}$ bytes Thus, Number of bits in physical address = 17 bits #### Number of Bits in Block Offset- We have, Block size - = 256 bytes - = 28 bytes Thus, Number of bits in block offset = 8 bits #### Number of Bits in Line Number- Total number of lines in cache - = Cache size / Line size - = 16 KB / 256 bytes - $= 2^{14}$ bytes / 2^8 bytes - = 2⁶ lines Thus, Number of bits in line number = 6 bits #### Number of Bits in Tag- Number of bits in tag - = Number of bits in physical address (Number of bits in line number + Number of bits in block offset) - = 17 bits (6 bits + 8 bits) - = 17 bits 14 bits - = 3 bits Thus, Number of bits in tag = 3 bits #### **Tag Directory Size-** Tag directory size - = Number of tags x Tag size - = Number of lines in cache x Number of bits in tag - $= 2^6 \times 3 \text{ bits}$ - = 192 bits - = 24 bytes Thus, size of tag directory = 24 bytes # Problem-02: Consider a direct mapped cache of size 512 KB with block size 1 KB. There are 7 bits in the tag. Find- - 1. Size of main memory - 2. Tag directory size # Solution- Given- - Cache memory size = 512 KB - Block size = Frame size = Line size = 1 KB - Number of bits in tag = 7 bits We consider that the memory is byte addressable. #### Number of Bits in Block Offset- We have, Block size - = 1 KB - $= 2^{10}$ bytes Thus, Number of bits in block offset = 10 bits #### Number of Bits in Line Number- Total number of lines in cache - = Cache size / Line size - = 512 KB / 1 KB - = 2⁹ lines Thus, Number of bits in line number = 9 bits #### Number of Bits in Physical Address- Number of bits in physical address - = Number of bits in tag + Number of bits in line number + Number of bits in block offset - = 7 bits + 9 bits + 10 bits - = 26 bits Thus, Number of bits in physical address = 26 bits #### Size of Main Memory- We have, Number of bits in physical address = 26 bits Thus, Size of main memory - $= 2^{26}$ bytes - = 64 MB #### **Tag Directory Size-** Tag directory size - = Number of tags x Tag size - = Number of lines in cache x Number of bits in tag - $= 2^9 \times 7 \text{ bits}$ - = 3584 bits - = 448 bytes Thus, size of tag directory = 448 bytes # Problem-03: Consider a direct mapped cache with block size 4 KB. The size of main memory is 16 GB and there are 10 bits in the tag. Find- - 1. Size of cache memory - 2. Tag directory size # Solution- Given- - Block size = Frame size = Line size = 4 KB - Size of main memory = 16 GB - Number of bits in tag = 10 bits We consider that the memory is byte addressable. #### Number of Bits in Physical Address- We have, Size of main memory - = 16 GB - $= 2^{34}$ bytes Thus, Number of bits in physical address = 34 bits #### Number of Bits in Block Offset- We have, Block size - = 4 KB - $= 2^{12}$ bytes Thus, Number of bits in block offset = 12 bits #### Number of Bits in Line Number- Number of bits in line number = Number of bits in physical address – (Number of bits in tag + Number of bits in block offset) $$= 34 \text{ bits} - (10 \text{ bits} + 12 \text{ bits})$$ $$= 34 \text{ bits} - 22 \text{ bits}$$ = 12 bits Thus, Number of bits in line number = 12 bits #### Number of Lines in Cache- We have- Number of bits in line number = 12 bits Thus, Total number of lines in cache = 2^{12} lines #### Size of Cache Memory- Size of cache memory = Total number of lines in cache x Line size $= 2^{12} \times 4 \text{ KB}$ $= 2^{14} KB$ = 16 MB Thus, Size of cache memory = 16 MB #### **Tag Directory Size-** Tag directory size - = Number of tags x Tag size - = Number of lines in cache x Number of bits in tag - $= 2^{12} \times 10 \text{ bits}$ - = 40960 bits - = 5120 bytes Thus, size of tag directory = 5120 bytes # Problem-04: Consider a direct mapped cache of size 32 KB with block size 32 bytes. The CPU generates 32 bit addresses. The number of bits needed for cache indexing and the number of tag bits are respectively- - 1. 10, 17 - 2. 10, 22 - 3. 15, 17 - 4. 5, 17 # Solution- Given- - Cache memory size = 32 KB - Block size = Frame size = Line size = 32 bytes - Number of bits in physical address = 32 bits #### Number of Bits in Block Offset- We have. Block size - = 32 bytes - = 2⁵ bytes Thus, Number of bits in block offset = 5 bits #### Number of Bits in Line Number- Total number of lines in cache - = Cache size / Line size - = 32 KB / 32 bytes - = 2¹⁰ lines Thus, Number of bits in line number = 10 bits # Number of Bits Required For Cache Indexing- Number of bits required for cache indexing - = Number of bits in line number - = 10 bits #### Number Of Bits in Tag- Number of bits in tag - = Number of bits in physical address (Number of bits in line number + Number of bits in block offset) - = 32 bits (10 bits + 5 bits) - = 32 bits 15 bits - = 17 bits Thus, Number of bits in tag = 17 bits Thus, Option (A) is correct. # Problem-05: Consider a machine with a byte addressable main memory of 2^{32} bytes divided into blocks of size 32 bytes. Assume that a direct mapped cache having 512 cache lines is used with this machine. The size of the tag field in bits is # Solution- Given- - Main memory size = 2³² bytes - Block size = Frame size = Line size = 32 bytes - Number of lines in cache = 512 lines #### Number of Bits in Physical Address- We have, Size of main memory $= 2^{32}$ bytes Thus, Number of bits in physical address = 32 bits #### Number of Bits in Block Offset- We have, Block size - = 32 bytes - = 2⁵ bytes Thus, Number of bits in block offset = 5 bits ### Number of Bits in Line Number- Total number of lines in cache - = 512 lines - = 2⁹ lines Thus, Number of bits in line number = 9 bits #### Number Of Bits in Tag- Number of bits in tag - = Number of bits in physical address (Number of bits in line number + Number of bits in block offset) - = 32 bits (9 bits + 5 bits) - = 32 bits 14 bits - = 18 bits Thus, Number of bits in tag = 18 bits # Problem-06: An 8 KB direct-mapped write back cache is organized as multiple blocks, each of size 32 bytes. The processor generates 32 bit addresses. The cache controller maintains the tag information for each cache block comprising of the following- - 1 valid bit - 1 modified bit - As many bits as the minimum needed to identify the memory block mapped in the cache What is the total size of memory needed at the cache controller to store meta data (tags) for the cache? - 1. 4864 bits - 2. 6144 bits - 3. 6656 bits - 4. 5376 bits # Solution- Given- - Cache memory size = 8 KB - Block size = Frame size = Line size = 32 bytes - Number of bits in physical address = 32 bits #### Number of Bits in Block Offset- We have, Block size - = 32 bytes - = 2⁵ bytes Thus, Number of bits in block offset = 5 bits #### Number of Bits in Line Number- Total number of lines in cache = Cache memory size / Line size - = 8 KB / 32 bytes - $= 2^{13}$ bytes $/ 2^5$ bytes - = 2⁸ lines Thus, Number of bits in line number = 8 bits #### Number Of Bits in Tag- Number of bits in tag - = Number of bits in physical address (Number of bits in line number + Number of bits in block offset) - = 32 bits (8 bits + 5 bits) - = 32 bits 13 bits - = 19 bits Thus, Number of bits in tag = 19 bits #### Memory Size Needed At Cache Controller- Size of memory needed at cache controller - = Number of lines in cache x (1 valid bit + 1 modified bit + 19 bits to identify block) - $= 2^8 \times 21 \text{ bits}$ - = 5376 bits