Coverage for Test 2

Discrete Computational Structures (CS 2071) Fall 2021

Test 2 will be held on Wednesday, November 10.
Coverage for Test 2 will include all the material in the lectures after Test 1, i.e., from October $8^{\text {th }}$ lecture to November $5^{\text {th }}$ lecture, inclusive.

Lecture October 8 - RSA Public-Key Cryptosystem

- Public-key cryptosystem RSA (Rivest-Shamir-Adleman)
- Public-key cryptosystems pioneered by Diffie and Hellmann
- Encryption formula for message: $m^{e} \bmod n$
- Decryption formula for message: $c^{d} \bmod n$
- Using extended GCD to compute private key d from public key e
- Application of Euler's Totient Theorem in proof of correctness

Lecture October 13 - Intro to Graph Theory, Euler's Degree Formula

- Graph definition
- Degree of a vertex
- Euler's degree formula: $\sum_{v \in V} \operatorname{deg}(v)=2 m$
- Parity result that the number of vertices of odd degree is even
- r-regular graphs, formula: $m=\frac{r n}{2}$
- Average degree formula: $\alpha=\frac{2 m}{n}$
- Complete graph, number of edges: $C(n, 2)=n(n-1) / 2$
- Subgraph, induced subgraph
- Bipartite graph, complete bipartite graphs
- Handshaking Theorem

Lecture October 15 - Graph Isomorphism, Path, Coloring

- Graph isomorphism
- Paths
- Connectedness
- Connected components
- Proper vertex colorings.
- Graph search and traversal algorithms: Depth-First Search (DFS) and DepthFirst Traversal (DFT)

Lecture October 18 - Planar Graphs and Euler's Polyhedron Formula

- Planar graph
- Kuratowski's characterization of nonplanar graphs.
- Dual graph, Euler's degree formula for faces
- Euler's Polyhedron Formula for connected planar graphs: $n-m+f=2$
- Application of Euler's Polyhedron Formula and vertex and face degree formulas to show that there are only five regular polyhedra.
- Proof every planar graph has a vertex of degree at most 5
- Proof every planar graph can be properly 6-colored

Lecture October 20 - Spanning Trees and Eulerian Circuits

- Spanning trees
- Number of spanning trees in the complete graph: K_{n} has n^{n-2} spanning tees
- Minimum spanning trees: spanning tree having minimum weight, where the weight of the tree is the sum of the weights on its edges
- Kruskal's algorithm for computing a minimum spanning tree in a weighted connected graph is based on the Greedy Method: a forest is grown by choosing next smallest edge that does not form a cycle
- Eulerian circuits
- Konigsberg Bridge problem
- Characterization of Eulerian graphs, i.e., graphs that contains Eulerian circuits: a graph is Eulerian iff it is connected and every vertex has even degree

Lecture October 22 - Hypercubes and Hamiltonian Cycles

- Definition of k-dimensional hypercube H_{k}
- Number of vertices of H_{k} is 2^{k}
- Number of edges of H_{k} is $k 2^{k-1}$
- Diameter of H_{k} is k
- Definition of k-bit Gray Codes
- k-bit Gray Codes correspond to Hamiltonian cycles in H_{k}
- H_{k} contains a Hamiltonian cycle for $k \geq 3$

Lecture October 25 - Implementation of Graphs and Digraphs

- Standard implementation of a graph: adjacency matrix and the adjacency lists
- Digraphs generalize graphs via the symmetric digraph
- Adjacency matrix and adjacency lists implementation extend to digraphs
- Powers of the adjacency matrix can be used to count the number of directed walks of a given length from vertex i to j for any given pair of vertices i and j

Lecture October 27 - Digraphs

- Definition of a digraph
- Digraph modeling of tournaments
- Directed acyclic graph or DAG
- Topological sorting
- Topological labeling
- Efficient algorithm based on DFT. Reverse of explored order

Lecture October 29 - The Web Digraph and PageRank

- Web digraph
- Page Rank derived from hyperlink structure of web, i.e., Web digraph
- Linear equations for Page Rank
- Matrix equation for Page Rank
- Interpretation using Principal Eigenvector
- Interpretation using random walks

Lecture November 1 - Intro to Combinatorics and Counting

- Traveling salesperson problem
- Maximum-weight perfect matching problem
- Combinatorial explosion
- Multiplication Principle and Addition Principle
- Number of permutations of an n-element set is n !
- Lexicographic order of permutation
- r-permutations of an n-element set: $P(n, r)=n(n-1) \cdots(n-r+1)=\frac{n!}{(n-r)!}$
- Combinations, i.e., number of ways $C(n, r)$ of choosing r elements from and n element set $C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{r!(n-r)!}$
- Applications to counting number of poker and bridge hands

Lecture November 3 - Permutations and Combinations

- Computing $k^{\text {th }}$ permutation
- Generating a random permutation
- Number of certain poker hands such as a pair, two pairs, Full House.
- Number of bridge hands with voids
- Permutations with repetitions: $P\left(n ; r_{1}, r_{2}, \ldots, r_{k}\right)=\frac{n!}{r_{1}!r_{2}!\cdots r_{k}!}$
- Combinations with repetitions:
> The number of integer solutions to the equation $x_{1}+x_{2}+\cdots+x_{r}=n$, $x_{i} \geq 1, \quad i=1, \ldots, r$ is $C(n-1, r-1)$.
> The number of integer solutions to the equation $x_{1}+x_{2}+\cdots+x_{r}=n$, $x_{i} \geq 0, i=1, \ldots, r$ is $C(n+r-1, r-1)$.

Lecture November 5 - Identities, Binomial Theorem, Pascal's Triangle

- Useful combinatorial identities
$\Rightarrow C(n, k)=C(n, n-k)$
$>$ Newton's Identity: $C(n, k) \times C(k, m)=C(n, m) \times C(n-m, k-m)$
$>$ Pascal's Identity: $C(n, k)=C(n-1, k)+C(n-1, k-1)$
- Binomial Theorem
- Pascal's Triangle

