
Introduction to Set Theory

Textbook Reading: First three

sections of Chapter 1 up to page 20.

1

Introduction to Set Theory

• A set is a structure representing an unordered

collection (group, plurality) of zero or more

distinct (different) objects.

• Set theory deals with operations between,

relations among, and statements about sets.

2

Basic notations for sets

• For sets, we’ll use variables S, T, U, A, B, …
• We can denote a set S in writing by listing all of its

elements in curly braces:

– {a, b, c} is the set of whatever 3 objects are denoted by

a, b, c.

• Set builder notation: For any proposition P(x) over

any universe of discourse, {x : P(x)} is the set of all

x such that P(x). Also denoted {x | P(x)}

e.g., {x : x is an integer where x>0 and x<5 }

3

Basic properties of sets

• Sets are inherently unordered:

– No matter what objects a, b, and c denote,

{a, b, c} = {a, c, b} = {b, a, c} =

{b, c, a} = {c, a, b} = {c, b, a}.

• All elements are distinct (unequal);

multiple listings make no difference!

– {a, b, c} = {a, a, b, a, b, c, c, c, c}.

– This set contains at most 3 elements!

4

Definition of Set Equality

• Two sets are declared to be equal if and only if

they contain exactly the same elements.

• In particular, it does not matter how the set is

defined or denoted.

• For example: The set {1, 2, 3, 4} =

{x | x is an integer where x > 0 and x < 5 } =

{x | x is a positive integer whose square

is > 0 and < 25}

5

Basic Set Relations: Member of

• xS (“x is in S”) is the proposition that object x is an

lement or member of set S.

• xS (“x is not in S”) is the proposition that object x
is not an lement of set S.

• For xample

– 3{1,2,3,4,5},

– ‘a’{x | x is a letter of the alphabet}

– 2{1,3,5,7,9,11,13}

– ‘a’{x | x is a capital letter of the alphabet}

6

Logical symbols∀ for all→ implies↔ if and only if (iff)∃ there exists∄ there does not exist∧ and∨ or

7

Set equality

Two sets are equal iff (if and only if) they have

all the same members.”

Can define set equality in terms of  relation:

S,T: S = T  (x: xS  xT)

8

The Empty Set

•  (“null”, “the empty set”) is the unique set
that contains no elements whatsoever.

•  = {}

9

Subset and Superset Relations

• ST (“S is a subset of T”) means that every element of S
is also an element of T.

• Equivalently,

ST x (xS → xT)

•  S, S  S.

• S  T (“S is a superset of T”) means T  S.

• Note S = T  S  T  S  T.

• iff x such that xS  xT

10

TS /

Proper (Strict) Subsets & Supersets

• ST (“S is a proper subset of T”) means that
ST but S ≠ T . Similar for ST.

11

S
T

Venn Diagram equivalent of ST

Example:
{1,2} 
{1,2,3}

Sets Are Objects, Too!

• The objects that are elements of a set may

themselves be sets.

• For example, let S={x | x  {1,2,3}} then

S={, {1}, {2}, {3},{1,2}, {1,3}, {2,3}, {1,2,3}}

• Note that 1  {1}  {{1}} !!!!

12

Cardinality

• |S| (read “the cardinality of S”) is a measure
of how many different elements S has. e.g.,

||=0, |{1,2,3}| = 3, |{a,b}| = 2,

|{{1,2,3},{4,5}}| = 2

13

Universal Set

A set which has all the elements in the universe

of discourse is called a universal set. We will

usually denote this set by U.

14

Venn Diagrams

In a class of 50 college freshmen, 30 are studying
Python, 25 studying C++, and 10 are studying both. How
many freshmen are studying either computer language?

U A B

10 1520

5
| | | | | | | |A B A B A B = + − 

= 30 + 25 – 10 = 45

The Union Operator

• For sets A, B, their union AB is the set

containing all elements that are either in A or

in B (or in both).

• Formally, AB = {x | xA or xB}.

• Note that AB contains all the elements of A

and it contains all the elements of B:

16

Union Examples

• {a,b,c}{2,3} = {a,b,c,2,3}

• {2,3,5}{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7}

17

The Intersection Operator

• For sets A, B, their intersection AB is the set

containing all elements that are

simultaneously in A and in B.

• AB={x | xA and xB}.

• Note that AB is a subset of A and it is a

subset of B:

18

Intersection Examples

• {a,b,c}{2,3} = ___

• {2,4,6}{3,4,5} = ______

19


{4}

Disjointedness

• Two sets A, B are called

disjoint (i.e., unjoined)

iff their intersection is

empty. (AB = )

• Example: the set of even

integers is disjoint with

the set of odd integers.

20

Help, I’ve
been

disjointed!

Set Difference

• For sets A, B, the difference of A and B, written

A − B or alternatively A \ B is the set of all

elements that are in A but not B.

• A − B = x  xA and xB

• Also called:

The complement of B with respect to A.

21

Set Difference Examples

• {1,2,3,4,5,6} − {2,3,5,7,9,11} =

• Z − N = {… , -1, 0, 1, 2, … } − {0, 1, … }
= {x | x is an integer but not a nat. #}

= {x | x is a negative integer}

= {… , -3, -2, -1}

22

{1,4,6}

Set Difference - Venn Diagram

• A – B is what’s left after B
“takes a bite out of A”

23

Set A Set B

Set
A−B

Chomp!

Set Complements

• The universe of discourse can itself be

considered a set, call it U.

• The complement of A, written ҧ𝐴 or

alternatively Ac, is the complement of A with

respect to U, i.e., it is U − A.

• E.g., If U = {0,1,2,3,4,5,6,7} 3,5 = {0,1,2,4,6,7}
24

More on Set Complements

• An equivalent definition, when U is clear:

25

}|{ AxxA =

A

U

A

The Symmetric Difference Operator

• For sets A, B, their symmetric difference AB

is the set containing all elements that are

either in exactly one of the sets A and B

• AB = AB – AB

26

Cartesian Product

• The Cartesian product of two sets A and B,

denoted A × B, is the set of all ordered pairs (a,

b) where a is in A and b is in B.

• A×B = { (a,b) ∣ a ∈ A and b ∈ B }.

• |A×B| = |A|×|B|

27

Table representing Cartesian product

A table can be created by taking the Cartesian

product of a set of rows and a set of columns. If

the Cartesian product rows × columns is taken, the

cells of the table contain ordered pairs of the form
(row value, column value).

28

PSN. Pause video and work on solving𝑈 = 0,1,2,3,4,5,6,7,8,9 , 𝐴 = 0,1,2 , 𝐵 = {0,2,4,6}
|A| =

AB =

AB =

A – B =

AB =

A×B =

|A×B| =ҧ𝐴

Generalized Union

• Binary union operator: AB

• n-ary union:

AA2…An

(grouping & order is irrelevant because  is

commutative and associative)

• “Big U” notation:

• Or for infinite sets of sets:

30


n

i

iA
1=


XA

A


Generalized Intersection

• Binary intersection operator: AB

• n-ary intersection:

A1A2…An

(grouping & order is irrelevant because  is

commutative and associative)

• “Big Arch” notation:

• Or for infinite sets of sets:
31


n

i

iA
1=


XA

A


Infinite Sets

• Conceptually, sets may be infinite (i.e., not

finite, without end, unending).

• Symbols for some special infinite sets:

N = {0, 1, 2, …} The natural numbers.
Z = {…, -2, -1, 0, 1, 2, …} The integers.
R = The “real” numbers, such as
374.1828471929498181917281943125…

• Is it possible to label real numbers R with

natural numbers?
32

Problem Solving Notebook (PSN):

Russell’s Paradox

Let R be the set of all sets that do not contain

themselves, i.e., are not members of

themselves.

PSN. What is meant by a paradox?

And, why does this lead to

a paradox.

33

Bertrand Russell

Example of Russell-Like Paradox

In a small town, where every man is clean-
shaven, there is a barber.

This barber shaves all men who do not
shave themselves and only men who do not
shave themselves.

Who, then, shaves the barber?

-Bertrand Russell

34

Russell’s Paradox a Milestone
in Set Theory

Russell's paradox threatened the foundations of

mathematics. This motivated a great deal of

research around the turn of the 20th century to

develop a consistent (contradiction free) set

theory.

35

In the old days when UC was just a ranch, a

cowboy rode in on Friday, stayed overnight at

the Bearcats Hotel, and rode out the next day on

Monday. How is that possible?

Answer

His horse’s name was Monday!

Actually, his

horse’s name
was Friday!

That’s a
paradox!

De Morgan’s Laws, Proving Set
Identities, Infinite Cardinalities

Textbook Reading. Continue

reading Chapter 1,

pages 20-25.

1

Set Identities

• Identity: A=A AU=A

• Domination: AU=U A=
• Idempotent: AA = A = AA

• Double complement:

• Commutative: AB=BA

AB=BA

AB=B  A

• Associative: A(BC)=(AB)C

A(BC)=(AB)C

A (B C)=(A  B) C 2

AA =)(

DeMorgan’s Laws for Sets

3

BABA

BABA

=

=

Proving Set Identities

To prove statements about sets, of the form

E1 = E2 (where E’s are set expressions), here

are two useful techniques:

• Prove E1  E2 and E2  E1 (mutual subsets)

– Prove 𝑥 ∈ 𝐸1 → 𝑥 ∈ 𝐸2 and 𝑥 ∈ 𝐸2 → 𝑥 ∈ 𝐸1
• Use a membership table.

4

Method 1: Mutual subsets

Example: Show distributive law holds:

A  (B  C) = (A  B)  (A  C).

Show that A  (B  C)  (A  B)  (A  C)

– Assume xA(BC) & show x(AB)(AC).

– We know that xA, and either xB or xC.

• Case 1: xB. Then xAB, so x(AB)(AC).

• Case 2: xC. Then xAC , so x(AB)(AC).

– Therefore, x(AB)(AC).

We have shown that A(BC)(AB)(AC).

5

Proof cont’d
Show that (AB)(AC)  A(BC)

– Assume x(AB)(AC) and show xA(BC).

– We know that x AB or x AC

• Case 1: x AB. Then xA(BC)

• Case 2: x AC. Then xA(BC)

This shows that (AB)(AC)  A(BC).

We have shown that A(BC)(AB)(AC) and

(AB)(AC)  A(BC). Therefore, we have proven

that

(AB)(AC) = A(BC).
6

Method 2: Membership Tables

• Just like truth tables for propositional logic,

which we’ll see later in this course.
• Columns for different set expressions.

• Rows for all combinations of memberships in

constituent sets.

• Use “1” to indicate membership in the derived
set, “0” for non-membership.

• Prove equivalence with identical columns.

7

Membership Table for Operations

8

AA BB AA  BB AA  BB AA −− BB

0 0 0 0 0
0 1 1 0 0
1 0 1 0 1
1 1 1 1 0

PSN. Give Membership Tables for

operations of Symmetric Difference

and Complement.

9

Membership Table Example

Prove (A  B) − B = A − B.

10

AA BB AABB ((AABB))−−BB AA−−BB

0 0 0 0 0
0 1 1 0 0
1 0 1 1 1
1 1 1 0 0

Alternate proof of distributive law

A  (B  C) = (A  B)  (A  C)

using a membership table

11

A B C A  B A  C B  C A  (B  C) (A  B)  (A  C)

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

1

0

1

1

1

0

1

1

1

0

0

0

0

0

1

1

1

0

0

0

0

0

1

1

1

12

PSN. Prove (AB) − C = (A − C)  (B − C)

using a membership table.

The Power Set Operation

• The power set P(S) of a set S is the set of all subsets

of S. P(S) = {x | x  S}.

• E.g. P({a,b}) = {, {a}, {b}, {a,b}}.

• Sometimes P(S) is written 2S.

Note that for finite S, |P(S)| = 2|S|.

• It is easily show that for finite sets |P(S)| > |S|

(where N denote the natural numbers).

• For infinite sets S is also true that the cardinality of

P(S) is strictly greater than the cardinality of S. This

can be shown using a generalization of Cantor’s
diagonal, but is beyond the scope of this course.

13

PSN. Pause video and work on solving𝑈 = 0,1,2,3,4,5,6,7,8,9 , 𝐴 = 0,1,2 , 𝐵 = {0,2,4,6}
P(B) =

|P(AB)| =

|P(A×B)| =

| P(A)×P(B)| =

Infinite cardinalities

• Cardinality of real numbers is strictly greater

than natural numbers.

• In particular, you can’t list the set of real
numbers between 0 and 1, or equivalently

index them with the natural numbers.

• Cantor showed that at least one real number

will not be included in the list, so that the

subset of real number between 0 and 1 is

strictly greater than the natural numbers.

15

Cantor’s Diagonal
Imagine listing all real numbers between 0 and

1 in any order. You can always make an

unlisted real number by changing every digit

on the diagonal.

Georg Cantor

16

Countable

• We say the cardinality of the natural numbers

is countable.

• The cardinality of the real numbers is

uncountable.

• A countable set is a set with the same

cardinality as some subset of the set of natural

numbers. A countable set is either a finite set

or a countably infinite set.

17

Rational numbers are countable

Diagram below shows how to list all the rational numbers by

following the arrows. Numbers in red indicated rational numbers

that have already been counted and need not be added to the

list.

18

Meaning of Discrete

• Discrete mathematics deals with structures

that are finite or infinite but countable.

• A random variable is said to be discrete if the

set of values it can take is either finite or

infinite but countable.

19

Continuum Hypothesis

• In mathematics, the continuum hypothesis

(abbreviated CH) states:

There is no set whose cardinality is strictly between

that of the integers and the real numbers.

• Despite his efforts Cantor could not resolve CH.

20

Continuum Hypothesis
• The problem persisted and was considered so important by Hilbert that he

placed it first on his famous list of open problems to be faced by the 20th

century. Hilbert also struggled to resolve CH, again without success.

David Hilbert

• Ultimately, this lack of progress was explained by the combined results of

Gödel and Cohen, which together showed that CH cannot be resolved on

the basis of the axioms that mathematicians were employing.

Kurt Friedrich Gödel 21

Joke (bad)

Why did the engineering students not finish
the lecture video?

They were getting a little ANSI.

22

This joke is not

only bad, it’s
nerdish bad!

Principle of Inclusion-Exclusion

Textbook Reading:

Section 1.5, pp. 34-41
1

If sets A and B are disjoint, then

|A  B| = |A| + |B|

A B

What if A and B are not disjoint?

Sum Rule

For two arbitrary sets A and B

|||||||| BABABA −+=

A B

Inclusion-Exclusion (2 sets)

Example Inclusion-Exclusion (2 sets)

How many numbers from 1 to 1000 are multiples of 3 or 5

Let S be the set of integers from 1 to 1000 that are multiples of 3 or multiples of 5.

Let A be the set of integers from 1 to 1000 that are multiples of 3.

Let B be the set of integers from 1 to 1000 that are multiples of 5.

A B
It is clear that S is the union of A and B,

but notice that A and B are not disjoint.

|A| = 1000/3 = 333 |B| = 1000/5 = 200

A Å B is the set of integers that are multiples of 15, and so |A Å B| = 1000/15 = 66

So, by the inclusion-exclusion principle, we have |S| = |A| + |B| – |A Å B| = 467.

PSN. Let p and q be any two prime numbers and let n = pq.

Applying Principle of Inclusion-Exclusion and complement

sets show that the number of positive numbers less than n

that are relatively prime to n (i.e., have no factor greater than

1 in common with n is (p – 1)(q – 1).

This has application to the important RSA cryptosystem,

which we will discuss later in the course.

Sometimes it is useful to apply the Principle of Optimality to

the complement of a set. For example, suppose A is the

set of numbers between 1 and n that are relatively prime to

a n. To compute |A| it is easier to first compute | ҧ𝐴| using the

Principle of Optimality, then computing |A| by |A| = n – | ҧ𝐴|.

|A [B [C| = |A| + |B| + |C|

– |A Å B| – |A Å C| – |B Å C|

+ |A Å B Å C|

A B

C

Inclusion-Exclusion (3 sets)

Proof Inclusion-Exclusion (3 sets)

A
B

C

1 2

2

1

1

2
3

|A| + |B| + |C| |A| + |B| + |C| – |A Å B| – |A Å C| – |B Å C|

A
B

C

1 1

1

1

1

1
0

A
B

C

1 1

1

1

1

1
1|A| + |B| + |C|

– |A Å B| – |A Å C| – |B Å C|

+ |A Å B Å C|

|A [B [C|

Inclusion-Exclusion (3 sets)

From a total of 50 students: 30 know Java

18 know C++

26 know C#

9 know both Java and C++

16 know both Java and C#

8 know both C++ and C#

47 know at least one language.

How many know none?

How many know all?

|A [B [C| = |A| + |B| + |C| – |A Å B| – |A Å C| – |B Å C| + |A Å B Å C|

|A|

|B|

|C|

|A Å B|

|A Å C|

|B Å C|

|A [B [C||A Å B Å C|

47 = 30 + 18 + 26 – 9 – 16 – 8 + |A Å B Å C|

|A Å B Å C| = 6

50 – |A [B [C| = 3

PSN. Using set complement and the Inclusion-

Exclusion with 3 sets, obtain a formula for the

number of numbers between 1 and 500, inclusive,

that are relatively prime to 60.

|A [B [C [D| = |A| + |B| + |C| + |D|

– |A Å B| – |A Å C| – |A Å D| – |B Å C| – |B Å D| – |C Å D|

+ |A Å B Å C| + |A Å B Å D| + |A Å C Å D| + |B Å C Å D|

– |A Å B Å C Å D |

Inclusion-Exclusion (4 sets)

A B

C D

A B

C D

1 1

11

3

3

22

3

2

2

3

4

|A| + |B| + |C| + |D|

A B

C D

1 1

11

0

0

11

0

1

1

0

-2

|A| + |B| + |C| + |D|
– |A Å B| – |A Å C| – |A Å D| – |B Å C| – |B Å D| – |C Å D|

A B

C D

1 1

11

1

1
11

1
1

1
1

2

|A| + |B| + |C| + |D|
– |A Å B| – |A Å C| – |A Å D| – |B Å C| – |B Å D| – |C Å D|

+ |A Å B Å C| + |A Å B Å D| + |A Å C Å D| + |B Å C Å D|

A B

C D

1 1

11

1

1
11

1
1

1

1
1

|A| + |B| + |C| + |D|

– |A Å B| – |A Å C| – |A Å D| – |B Å C| – |B Å D| – |C Å D|

+ |A Å B Å C| + |A Å B Å D| + |A Å C Å D| + |B Å C Å D|

– |A Å B Å C Å D | = |A [B [C [D|

Inclusion-Exclusion (n sets)

What is the inclusion-exclusion formula for the union of n sets?

sum of sizes of all single sets
– sum of sizes of all 2-set intersections
+ sum of sizes of all 3-set intersections
– sum of sizes of all 4-set intersections
…
+ (–1)n+1 × sum of sizes of intersections of all n sets

1 2 nA A A   =

 

1

1,2, ,1

(1)
n

k

i

S nk i S

S k

A
+

= 
=

= − 

Inclusion-Exclusion (n sets)

Inclusion-Exclusion (n sets)

sum of sizes of all single sets
– sum of sizes of all 2-set intersections
+ sum of sizes of all 3-set intersections
– sum of sizes of all 4-set intersections
…
+ (–1)n+1 × sum of sizes of intersections of all n sets

|A1 [A2 [A3 [… [An|

We want to show that every element is counted exactly once.

Consider an element which belongs to exactly k sets, say A1, A2, A3, …, Ak.

In the formula, such an element is counted the following number of times:

Therefore each element is counted exactly once, and thus the formula is correct

Binomial Coefficient and Binomial Theorem will be
covered later in course in Chapter 7 (see page 459)

Plug in x = 1 and y = -1 in the above binomial theorem, we have

Hope you had a good breakfast this morning.
What type of bagel can fly?

16

Answer:

a plain bagel

17

Three Standard Proof
Techniques

1. Disproof by Counterexample

2. Proof by Contradiction

3. Mathematical Induction

Disproof by Counterexample

A counterexample is an example that
disproves a statement or proposition.

Counterexamples are important because
they enable mathematicians to show that
certain conjectures or ideas, are false

Everyday Coin Changing

Make change of C cents using fewest coins by first choosing as

many quarters as possible, then as many dimes, then as many

nickels, and finally pennies. This can be programmed as follows

using integer division, which truncates to an integer.

Quarters = C / 25;

R = C – 25*Quarters;

Dimes = R / 10;

R = R – 10*Dimes;

Nickels = R / 5;

Pennies = R – 5*Nickels

3

Same Algorithm without Nickels

Quarters = C / 25;

R = C – 25*Quarters;

Dimes = R / 10;

Pennies = R – 10*Dimes;

PSN. Is this algorithm still correct, i.e.,

are fewest coins used?

(pause video to think about this)
4

What is Proof by Contradiction?

Proof by contradiction establishes the truth of a

proposition, by showing that assuming the

proposition to be false leads to a contradiction,

i.e., a contradiction to the assumption or

something known to be false.

Proof by contradiction is also known as indirect

proof, proof by assuming the opposite, and

reduction to impossibility or absurdity.

5

Example

Prove using contradiction that the square
root of 2 is irrational, i.e., cannot be written
in the form a/b where a and b are positive

integers.

Proof by contraction that square

root of 2 is irrational:

Let's suppose 2 were not irrational, i.e., is

a rational number. Then we can write it 2 =
a/b where a,b are whole numbers, b not
zero. We additionally assume that this a/b is
simplified to the lowest terms, since that can
obviously be done with any fraction. Notice
that in order for a/b to be in its simplest
terms, both a and b must be not be even.

One or both must be odd. Otherwise, you
could simplify.

Proof by contraction that square root of 2
is irrational:

From the equality 2 = a/b it follows that 2 =
a2/b2, or a2 = 2 * b2. So the square of a is an
even number since it is two times
something. From this we can know that a
itself is also an even number. Why?
Because it can't be odd; if a itself was odd,
then a * a would be odd too. Thus, a = 2k
where k is this other number.

If we substitute a = 2k into the equation 2 = a2/b2,

we get:

2 = (2k)2/b2

→ 2 = 4k2 / b2 → 2b2 = 4k2 → b2 = 2k2

This means b2 is even, from which follows again

that b itself is an even number! This is a

contradiction, because we started the whole

process saying that a/b is simplified to the lowest

terms, and now it turns out that a and b would both

be even. So 2 cannot be rational.

Proof by contraction that square root of 2
is irrational:

Second Example: Coin
Changing

Consider again the problem of returning
(correct) change using quarters, dimes,
nickels, pennies. Greedy Algorithm chooses
the most quarters, then the most dimes for
remaining change, etc.

Prove that Greedy Algorithm returns fewest
coins using proof by contradiction.

Proof by contradiction

Assume greedy method of making change does not involve the fewest
coins. Now consider an optimal solution that makes the same change C,
but uses the fewest coins.

Let g25, g10, g5, g1 be the number of quarters, dimes, nickels, pennies in the
greedy solution.

Let p25, p10, p5, p1 be the number of quarters, dimes, nickels, pennies in
the optimal solution.

Since the greedy and optimal solution make the same change C we have

C = 25 × g25 + 10 × g10 + 5 × g5 + g1 = 25 × p25 + 10 × p10 + 5 × p5 + p1

Then, based on our assumption that the greedy does not involve the
fewest coins, we have

g25 + g10 + g5 + g1 > p25 + p10 + p5 + p1

Trick

The clever idea (trick) in getting a handle on
the proof is to make some observations
about the optimal solution.

PSN. Obtain upper bounds p10, p5, p1

(pause video to think about this)

We have shown that p10 ≤ 2, p5 ≤ 1, p1 ≤ 4
and if p5 = 1, then p10 ≤ 1.

First consider the case where there are no
nickels in the optimal solution, i.e., p5 = 0. Then
the most change the optimal solution can make
using only dimes, nickels and pennies, involves
2 dimes and 4 pennies for a total of 24₵.

Now consider the case where there is one
nickel, i.e., p5 = 1. Then the most change the
optimal solution can make using only dimes,
nickels and pennies, involves 1 dimes, 1 nickel
and 4 pennies for a total of 19₵.

Number of quarters chosen by greedy and
optimal solutions

Assume the optimal and greedy solution differ in the number of
quarters chosen, i.e., g25 ≠ p25. By definition of the greedy method
it chooses more quarters, i.e., g25 > p25.

Since the greedy and optimal solution make the same amount of
change C, i.e.,

C = 25 × g25 + 10 × g10 + 5 × g5 + g1 = 25 × p25 + 10 × p10 + 5 × p5 + p1

the optimal solution needs to make up the shortage of at least 25₵
using only dimes, nickels and quarters. But, this is impossible
since we showed on the previous slide that the optimal solution
can make change of at most 24₵ using only dimes, nickels and
pennies. Since we have obtained a contradiction, we can conclude
the that greedy and optimal choose the same number of quarters,
i.e., g25 = p25.

We’ve shown that g25 = p25

Now consider the remaining change R after using the quarters are
used, i.e.,

R = C – 25 × g25 = C – 25 × p25 .

Using a similar argument, we can show that the greedy and optimal
solutions use the same number of dimes. Otherwise, optimal solution is
short at least one dime and can make at most 9 cents using 1 nickel
and 4 pennies.

Updating remaining change after dimes are used, we can show they
involve the same number of nickels. Otherwise, optimal solution is short
at least one nickel and can only make at most 4 cents using pennies.

All that is left is pennies and since the greedy and optimal solutions
make the same total change and we have shown they use the same
number of quarters, dimes and nickels, they are forced to use the same
number of pennies.

It follows that greedy and optimal involves exactly the same number of

coins, which is a contradiction to assumption greedy does not involve
the fewest coins.

We have obtained a contradiction to the
assumption that the greedy method does not
use the fewest number of coins in making

change. Therefore, the opposite is true, i.e.,
the greedy method uses the fewest coins to
make change. This completes our proof by

contradiction.

General Coin-Changing Problem is

hard

Surprisingly, the problem with general

denominations is hard.

It has been shown to be NP-hard. We will discuss

NP-complete and NP-hard later in this course.

There is no known polynomial time algorithm in the

worst case for solving the coin-changing problem

for general denominations. 17

We have shown that the greedy method works for
US denominations.

Joke that makes no sense

How do you know the mint making

pennies was not shut down?

Answer: It makes no cents.

Three Standard Proof
Techniques

1. Disproof by Counterexample

2. Proof by Contradiction

3. Mathematical Induction

Mathematical Induction

Mathematical induction is a powerful proof
technique that is important in Computer
Science. It is useful in proving the

correctness of algorithms, as well as in the
design and analysis of algorithms.

Formal Formulation
Suppose we have a sequence of propositions P(1), P(2), . . . , P(n), . . . for

which the following two steps have been established:

Basis step: P(1) is true*

Induction (or Implication) step: if P(k) is true for any given k,

Then P(k + 1) must also be true.

Then P(n) is true for all positive integers n.

The validity of the Principle of Mathematical Induction can be seen as follows.

Since P(1) is true, the induction step shows that P(2) is true. But the truth of

P(2) in turn implies that P(3) is true, and so forth. The induction step allows

this process to continue indefinitely.

*For simplicity, here we are taking basis step with n = 1. Later we will look at

variations of mathematical induction, where we take basis step with n = b for

some integer b.

3

Example 1
P(n): 12+ 22+ … + 𝑛2 = 𝑛(𝑛 + 1)(2𝑛 + 1)/6

4

Basis step:

฀

12 =1=1(1+1)
1(1+1)(2 +1)

6
(P(1) is true).

Induction step: Assume that P(k) is true for a given k, so that 12 + 22 + . . .

+ k2 = k(k + 1)(2k + 1)/6. We must show that it would follow that P(k + 1) is

true, namely, that 12 + 22 + . . . + (k + 1)2 = (k + 1)(k + 2)(2k + 3)/6. We have

฀

12 + 22 + + k 2 + (k +1)2 = (12 + 22 + + k 2) + (k +1)2

= k(k +1)
(2k +1)

6
+ (k +1)2(since P(k) is assumed true)

=
(k +1)[k(2k +1) + 6(k +1)]

6
=

(k +1)(2k 2 + 7k + 6)

6

=
(k +1)(k + 2)(2k + 3)

6
,

and therefore P(k + 1) is true.

Example 2 (using less formal notation)

Show that 1 + 3 + 5 + … + 2n – 1 = n2.

Basis Step. 1 = 12

Induction Step. Assume true result is true for n = k, i.e.,

1 + 3 + 5 + … + 2k – 1 = k2.

Now consider the case n = k + 1.

1 + 3 + 5 + … + 2k – 1 + 2k + 1

= (1 + 3 + 5 + … + 2k – 1) + 2k + 1

= k2 + 2k + 1 (by Induction Hypothesis)

= (k + 1)2

This completes the induction step and the proof.

PSN. Show that 1 + 2 + … + n = n(n + 1)/2.
5

Example 3 – Harmonic Series
The harmonic series is defined by H(n) = 1 + 1/2 + . . . + 1/n

Proposition. H(n) ≤ 1 + ln n

Basis Step ln 1 = 0 < 1 ≤ 0 + 1

Induction Step. Assume proposition is true for n = k, i.e., H(k) ≤ 1 + ln k + 1

Now consider the case n = k + 1. Clearly, H(k + 1) = H(k) + 1/(k + 1). Therefore,

by the Induction Hypothesis we have

H(k + 1) ≤ (1 + ln k) + 1/(k + 1) ≤ 1 + ln (k + 1).

To verify the last inequality, use the result that ln x ≤ x – 1, for all real numbers

x, 0 < x ≤ 2, so that
ln k – ln (k + 1) = ln(k/k+1) ≤ (k/k+1) – 1 = -1/(k + 1) .

This completes the induction step and proof of the Proposition.
6

Variations of induction

1. Often the sequence of propositions starts with an index different from 1,
such as 0 or in general an integer b. Then the basis step starts with this
initial value b. The induction step remains the same, and the two steps
together establish the truth of the propositions P(n) for all n greater than
or equal to this initial b.

2. Sometimes the propositions are only finite in number, P(1), . . . , P(l).
Then the induction step is modified to require that k < 1. Of course, the
conclusion then drawn is that P(1), . . . , P(l) are all true if the basis and
induction steps are valid.

3. The Principle of Mathematical Induction can also be stated in the
following so-called strong form, where the induction step is as follows:

Induction step (strong form): For any positive integer k, if P(j) is true for
all positive integers j ≤ k, then P(k + 1) must also be true.

4. A combination of the above.

7

Fibonacci Numbers

The nth Fibonacci number Fib(n) is defined by the recurrence

relations

Fib(n) = Fib(n – 1) + Fib(n – 2), n ≥ 2, Fib(0) = 0, Fib(1) = 1.

This generates sequence: 0 1 1 2 3 5 8 13 21 34 …

8

Applications in nature

Fibonacci or Golden Spiral

9

Example of proof using Strong Form of Induction

Proposition. Fib(n) < 2n, for all n ≥ 0.

Basis Step. Fib(0) = 0 < 20 and Fib(1) = 1 < 21. Thus, the Proposition is true

for n = 0 and n = 1.

Induction Step (Strong). Assume the Proposition is true for all integers from

0 to k, i.e.,

Fib(n) < 2n, n = 0, 1, …, k.

Now consider the case n = k + 1. Using recurrence relation for
Fibonacci, we obtain

Fib(k + 1) = Fib(k) + Fib(k – 1)

< 2k + 2k – 1 (applying Induction Hypothesis for n = k
and n = k – 1)

< 2k + 2k = 2k + 1

This completes the induction step and the proof.
10

PSN. Prove Fib(n) > 1.5n, for all n ≥ 11.

Note that this is not true for any n < 11 (check it
out), so we must start the basis step at n = 11.

Combining with previous result we have lower and
upper bounds for Fib(n):

1.5n < Fib(n) < 2n, for all n ≥ 11.

11

Trees
A tree is an important structure in CS with myriad

applications.

• It models operations in networks such as

broadcasting from a source and gathering at a

sink.

• It is an important data structure used in many

applications and algorithms.

• Mathematical properties of trees have important

applications in the design and analysis of

algorithms.

Tree Definition

2

A tree consists of a set of nodes (also called vertices),
where one node is identified as the root and each node
different from the root has another node associated with it
called its parent. A nodes is joined to it parent using an
edge. The set of all nodes having the same parent p are
called the children of p. A node with no children is called a
leaf.

Sample tree

Number of edges vs. number of nodes

in a tree

Theorem. The number m of edges of any tree T

is one less than the number n of nodes.

Proof by Induction. We perform induction on

the number of n of nodes.

Basis Step. A tree with one node has no edges,

i.e., we have m = 0 = n – 1

3

Induction Step

Assume true for n = k, i.e., any tree having k
vertices has k – 1 edges.

Now consider a tree T having n = k + 1 nodes. For
convenience, let n(T) and m(T) denote the number
of vertices and nodes of T.

PSN. To apply the induction hypothesis, we need to
perform an operation that reduces T to a tree T’
having k nodes. How to do this?

4

Applying Induction Hypothesis

Since T’ has k nodes, we can apply the induction
hypothesis (inductive assumption)

m(T’) = n(T’) – 1 (by Induction Hypothesis)

Thus, we have

m(T) = m(T’) + 1

= (n(T’) – 1) + 1 (substituting)

= n(T’) = n(T) – 1.

This completes the induction step and the proof.

5

2-tree

A 2-tree is a tree where every node that is not a

leaf has exactly two children.

6

An internal node is a node that is not a leaf node.

Let I(T) and L(T) denote the number of internal and leaf nodes of

a 2-tree T, respectively. For convenience, let I = I(T) and L = L(T).

Proposition. Let T be a 2-tree. Then, L = I + 1.

Clearly, the total number n of nodes satisfies n = I + L, so we

have:

Corollary 1. n = 2I + 1.

Corollary 2. n = 2L – 1.

Parametrizing the induction. We must decide,

which parameter, we will perform induction on,

i.e., the number I of internal nodes, the number

L of leaf nodes or the total number n of nodes.

We will choose L.

Basis Step

The proposition is true for L = 1. A single node

2-tree has one leaf node, the root, and 0

internal nodes, so we have

L = 1 = I + 1.

Induction Step

Assume proposition is true for L = k, i.e., all 2-
trees T with k leaf nodes have k – 1 internal
nodes. Now consider any 2-tree T having k + 1
leaf nodes.

PSN. To apply the induction hypothesis, we need
to perform an operation that reduces T to a tree
T’ with k leaf nodes.

How to do this?

PSN. To verify that this construction is valid, we

must prove that every 2-tree T contains a node,

both of whose children are leaf nodes. Proof this

result.

11

Since T’ has one fewer leaf nodes than T, i.e., T’ has k
nodes, we can apply the induction hypothesis, i.e.,

L(T’) = I(T’) + 1.

Thus,

L(T) = L(T’) + 1 = (I(T’) + 1) + 1 = I(T) + 1

This completes the induction step and the proof of the
Proposition.

12

Binary Trees

A binary tree is a tree where every node has at

most 2 children and we identify children as

either a left child or right child.

13

Inorder Traversal
Follow path around the tree starting at the root node and

going left first when there is choice. A node with no left

child is output when it is visited; otherwise the node is

output the second time it is visited. The inorder traversal of

the sample tree below is: gdhbeiacjf

Binary Search Trees

15

A binary search tree is a binary tree with a key (value) associated
with each node, so that for every node, all the keys in its left subtree
are smaller and all the keys in its right subtree are larger.

Proposition. An inorder traversal of a binary search tree outputs
the node keys in sorted order.

Inorder traversal: 1 5 8 10 12 15 20 22 25 28 30 36 38 40 45 48 50

16

Basis Step

Clearly, result is true for a binary search tree

having one node.

17

Induction Step Strong

Assume the result is true of all binary search

trees have j vertices, where 1 ≤ j ≤ k, i.e.,

performing an inorder traversal of a binary

search tree having j nodes, outputs the keys in

sorted order.

Now consider a binary search tree having k + 1

nodes.

18

Applying Induction Hypothesis
• Let L and R denote the left and right subtrees of T.

• Since both L and R have at most k nodes, we can apply the
induction hypothesis to them, i.e., performing an inorder traversal
of L outputs the keys in sorted order. The same applies to R.

• Performing an inorder traversal of T involves

– performing an inorder traversal of L,

– visiting the root,

– performing an inorder traversal of R.

• Since all the keys in L are less than the root key and all the keys in R
are greater than the root key, it follows that an inorder traversal of
T outputs the keys in sorted order.

This completes the induction step and the proof of the Proposition.

19

Illustration with Previous

Sample Binary Search Tree

L root R

1 5 8 10 12 15 20 22 25 28 30 36 38 40 45 48 50

Applying Induction output Applying Induction

Hypothesis with L root key Hypothesis with R

20

Foundations of Logic

Mathematical Logic is a tool for working with
elaborate compound statements. It includes:

• A formal language for expressing them.

• A concise notation for writing them.

• A methodology for objectively reasoning about
their truth or falsity.

• It is the foundation for expressing formal proofs in
all branches of mathematics.

Propositional Logic

Propositional Logic is the logic of compound
statements built from simpler statements
using so-called Boolean connectives.

Some applications in computer science:

• Design of digital electronic circuits.

• Expressing conditions in programs.

• Queries to databases & search engines.

George Boole
(1815-1864)

Definition of a Proposition

Definition: A proposition (denoted p, q, r, …) is simply:
• a statement (i.e., a declarative sentence)

– with some definite meaning, (not vague or ambiguous)

• having a truth value that’s either true (T) or false (F)

– it is never both, neither, or somewhere “in between!”
• However, you might not know the actual truth value,

• and, the truth value might depend on the situation or context.

• In probability theory, we assign degrees of certainty (“between” T
and F) to propositions.
– But for now: think True/False only!

Propositional Logic

Examples of Propositions

• “It is raining.” (In a given situation.)

• “Washington, D.C. is the capital of the U.S.”
• “1 + 2 = 3”
But, the following are NOT propositions:

• “Who’s there?” (interrogative, question)

• “La la la la la.” (meaningless interjection)

• “Just do it!” (imperative, command)

• “Yeah, I sorta dunno, whatever...” (vague)

• “1 + 2” (expression with a non-true/false value)

Propositional Logic

An operator or connective combines one or
more operand expressions into a larger
expression. (E.g., “+” in numeric exprs.)

• Unary operators take 1 operand (e.g., −3);
binary operators take 2 operands (e.g., 3  4).

• Propositional or Boolean operators operate
on propositions (or their truth values) instead
of on numbers.

Operators / Connectives

Operators

Some Popular Boolean Operators

Formal Name Nickname Arity Symbol

Negation operator NOT Unary ¬

Conjunction operator AND Binary 
Disjunction operator OR Binary 
Exclusive-OR operator XOR Binary 
Implication operator IMPLIES Binary →
Biconditional operator IFF Binary ↔

Propositional Logic: Operators

The Negation Operator

The unary negation operator “¬” (NOT)
transforms a prop. into its logical negation.

E.g. If p = “I have brown hair.”
then ¬p = “I do not have brown hair.”

The truth table for NOT: p p
T F
F T

T :≡ True; F :≡ False
“:≡” means “is defined as”

Operand
column

Result
column

Propositional Logic: Operators

The Conjunction Operator

The binary conjunction operator “” (AND)
combines two propositions to form their
logical conjunction.

E.g. If p=“I will have salad for lunch.” and
q=“I will have steak for dinner.”, then
pq=“I will have salad for lunch and

I will have steak for dinner.”

Remember: “” points up like an “A”, and it means “ND”

ND

Propositional Logic: Operators

• Note that a
conjunction
p1  p2  …  pn

of n propositions
will have 2n rows
in its truth table.

• Also: ¬ and  operations together are suffi-
cient to express any Boolean truth table!

Conjunction Truth Table

p q pq

F F F
F T F
T F F
T T T

Operand columns

Propositional Logic: Operators

The Disjunction Operator

The binary disjunction operator “” (OR)
combines two propositions to form their
logical disjunction.

p=“My car has a bad engine.”
q=“My car has a bad carburetor.”
pq=“Either my car has a bad engine, or

my car has a bad carburetor.” After the downward-
pointing “axe” of “”
splits the wood, you
can take 1 piece OR the
other, or both.



Propositional Logic: Operators

Meaning is like “and/or” in English.

• Note that pq means
that p is true, or q is
true, or both are true!

• So, this operation is
also called inclusive or,

because it includes the
possibility that both p and q are true.

• “¬” and “” together are also universal.

Disjunction Truth Table

p q pq

F F F
F T T
T F T
T T T

Note
difference
from AND

Propositional Logic: Operators

Nested Propositional Expressions

• Use parentheses to group sub-expressions:
“I just saw my old friend, and either he’s
grown or I’ve shrunk.” = f  (g  s)

– (f  g)  s would mean something different

– f  g  s would be ambiguous

• By convention, “¬” takes precedence over
both “” and “”.
– ¬s  f means (¬s)  f , not ¬ (s  f)

Propositional Logic: Operators

A Simple Exercise

Let p=“It rained last night”,
q=“The sprinklers came on last night,”
r=“The lawn was wet this morning.”

Translate each of the following into English:

¬p =

r  ¬p =

¬ r  p  q =

“It didn’t rain last night.”
“The lawn was wet this morning, and
it didn’t rain last night.”
“Either the lawn wasn’t wet this
morning, or it rained last night, or
the sprinklers came on last night.”

Propositional Logic: Operators

The Exclusive Or Operator

The binary exclusive-or operator “” (XOR)
combines two propositions to form their
logical “exclusive or”.

p = “I will earn an A in this course,”
q = “I will drop this course,”
p  q = “I will either earn an A in this course,

or I will drop it (but not both!)”

Propositional Logic: Operators

• Note that pq means
that p is true, or q is
true, but not both!

• This operation is
called exclusive or,

because it excludes the
possibility that both p and q are true.

• “¬” and “” together are not universal.

Exclusive-Or Truth Table

p q pq

F F F
F T T
T F T
T T F Note

difference
from OR.

Propositional Logic: Operators

Note that English “or” can be ambiguous
regarding the “both” case!

“Pat is a singer or
Pat is a writer.” -

“Pat is a man or
Pat is a woman.” -

Need context to disambiguate the meaning!

For this class, assume “or” means inclusive.

Natural Language is Ambiguous

p q p "or" q
F F F
F T T
T F T
T T ?





Propositional Logic: Operators

The Implication Operator

The implication p → q states that p implies q.

I.e., If p is true, then q is true; but if p is not
true, then q could be either true or false.

E.g., let p = “You study hard.”
q = “You will get a good grade.”

p → q = “If you study hard, then you will get
a good grade.” (else, it could go either way)

Propositional Logic: Operators

antecedent consequent

Implication Truth Table

• p → q is false only when
p is true but q is not true.

• p → q does not say
that p causes q!

• p → q does not require
that p or q are ever true!

• E.g. “(1=0) → pigs can fly” is TRUE!

p q p→q
F F T
F T T
T F F
T T T

The
only
False
case!

Propositional Logic: Operators

Examples of Implications

• “If this lecture ever ends, then the sun will
rise tomorrow.” True or False?

• “If Tuesday is a day of the week, then I am
a penguin.” True or False?

• “If 1+1=6, then I am an ostrich.”
True or False?

• “If the moon is made of green cheese, then I
am richer than Bill Gates.” True or False?

Propositional Logic: Operators

English Phrases Meaning p → q

• “p implies q”
• “if p, then q”
• “if p, q”
• “when p, q”
• “whenever p, q”
• “q if p”
• “q when p”
• “q whenever p”

• “p only if q”
• “p is sufficient for q”
• “q is necessary for p”
• “q follows from p”
• “q is implied by p”
We will see some equivalent

logic expressions later.

Propositional Logic: Operators

Converse, Inverse, Contrapositive

Some terminology, for an implication p → q:

• Its converse is: q → p.

• Its inverse is: ¬p → ¬q.

• Its contrapositive: ¬q → ¬ p.

• One of these three has the same meaning

(same truth table) as p → q. Can you figure
out which?

PSN. Which one? Prove it.

Propositional Logic: Operators

The biconditional operator

The biconditional p  q states that p is true if and only

if (iff) q is true.

p = “Joe Doe wins the 2020 senate election.”

q = “Joe Doe will be senator for all of 2021.”

p  q = “If, and only if, Joe Doe wins the 2020
election, Joe Doe will be senator for all of 2021.”

Propositional Logic: Operators

Biconditional Truth Table

• p  q means that p and q
have the same truth value.

• Note this truth table is the
exact opposite of ’s!
Thus, p  q means ¬(p  q)

• p  q does not imply
that p and q are true, or that either of them causes
the other, or that they have a common cause.

p q p  q
F F T
F T F
T F F
T T T

Propositional Logic: Operators

Show that

a) p  q is the same as p → q and q → p

b) Show that p  q is the same as ¬(p  q)

Boolean Operations Summary

We have seen 1 unary operator and 5 binary
operators. Their truth tables are below.

p q p pq pq pq p→q pq

F F T F F F T T
F T T F T T T F
T F F F T T F F
T T F T T F T T

Propositional Logic: Operators

TeЯЯible Joke

Professor - "In English, a double negative
becomes a positive. But it is not true for every
language. In Russian, a double negative still
remains a negative. However, there is no
language where a double positive can form a
negative.“

Student - "yeah, right"

Logical Equivalence

Compound propositions (formulas) p and q

are logically equivalent to each other, written
pq, iff p and q contain the same truth values
as each other in all rows of their truth tables.

Propositional Logic: Equivalences

Ex. Prove that pq (p  q).

p q ppqq pp qq pp  qq ((pp  qq))

F F
F T
T F
T T

Proving Equivalence
via Truth Tables

F
T

T
T

T

T

T

T
T

T

F
F

F

F

F
F

F
F

T
T

Propositional Logic: Equivalences

Equivalence Laws - Examples

• Identity: pT  p pF  p

• Domination: pT  T pF  F

• Idempotent: pp  p pp  p

• Double negation: p  p

• Commutative: pq  qp pq  qp

• Associative: (pq)r  p(qr)
(pq)r  p(qr)

Propositional Logic: Equivalences

More Equivalence Laws

• Distributive:
p(qr)  (pq)(pr) (distribute  over )
p(qr)  (pq)(pr) (distribute  over )

• De Morgan’s:
(pq) p  q

(pq) p  q

• Trivial tautology/contradiction:
p  p  T p  p  F

Propositional Logic: Equivalences

Augustus
De Morgan
(1806-1871)

Defining Operators via Equivalences

Using equivalences, we can define operators
in terms of other operators.

• Exclusive or: pq  (pq)(pq)
pq  (pq)(qp)

• Implies: p→q p  q

• Biconditional: pq  (p→q)  (q→p)
pq (pq)

Propositional Logic: Equivalences

An Example Problem

• Check using a symbolic derivation whether
(p  q) → (p  r) p  q  r.

(p  q) → (p  r) [Expand definition of →]

(p  q)  (p  r) [Expand defn. of ]

(p  q)  ((p  r)  (p  r))

[DeMorgan’s Law]

 (p  q)  ((p  r)  (p  r))

cont.

Propositional Logic: Equivalences

Example Continued...

(p  q)  ((p  r)  (p  r)) [ commutes]

 (q  p)  ((p  r)  (p  r)) [ associative]

 q  (p  ((p  r)  (p  r))) [distrib.  over ]

 q  (((p  (p  r))  (p  (p  r)))

[assoc.]  q  (((p  p)  r)  (p  (p  r)))

[trivial taut.]  q  ((T  r)  (p  (p  r)))

[domination]  q  (T  (p  (p  r)))

[identity]  q  (p  (p  r))  cont.

Propositional Logic: Equivalences

End of Long Example

q  (p  (p  r))

[DeMorgan’s]  q  (p  (p  r))

[Assoc.]  q  ((p  p)  r)

[Idempotent]  q  (p  r)

[Assoc.]  (q  p)  r

[Commut.] p  q  r

Q.E.D. (quod erat demonstrandum)

Propositional Logic: Equivalences

(Which was to be shown.)

PSN. Give alternate proof using truth
tables that

(p  q) → (p  r) p  q  r.

Review: Propositional Logic

• Atomic propositions: p, q, r, …
• Boolean operators:    →
• Compound propositions: (p  q)  r

• Equivalences: pq (p → q)

• Proving equivalences using:

– Truth tables.

– Symbolic derivations. p  q  r …

Propositional Logic

Tautologies and Contradictions

A tautology is a compound proposition that is
true no matter what the truth values of its
atomic propositions are!

Ex. p  p

A contradiction is a compound proposition
that is false no matter what! Ex. p  p

Other compound props. are contingencies.

Propositional Logic: Equivalences

Interpretation

Definition. An interpretation is an assignment
I of a truth value, i.e, T or F, to every
propositional letter r. We denote the assignment
of a truth value to r by I(r).

Tautologies and Contradictions

φ is a tautology iff I(φ) = T for every interpretation I.

φ is a contradiction iff I(φ) = F for every interpretation I.

φ is a tautology iff φ is a contradiction.

pq iff the compound proposition pq is a tautology.

Show the following compound formula is a contradiction:

(p  q  r)  (p  q  r)  (p   q  r)  ( p  q  r) 

(p   q  r)  ( p  q  r)  ( p   q  r)  ( p   q  r)

Proof. (p  p)  (q  q)  (r  r) = F  F  F = F

Using the distributive law of  over  we have

F = (p  p)  (q  q)  (r  r)

= (p  q  r)  (p  q  r)  (p   q  r)  ( p  q  r) 

(p   q  r)  ( p  q  r)  ( p   q  r)  ( p   q  r)

PSN. Show the following compound formula is a tautology:

= (p  q  r)  (p  q  r)  (p   q  r)  ( p  q  r) 

(p   q  r)  ( p  q  r)  ( p   q  r)  ( p   q  r)

Satisfiability

A formula φ is satisfiable iff it is T for
some interpretation I, i.e., I(φ) = T.
Otherwise it is unsatisfiable.

Every tautology φ is satisfiable.

φ is not satisfiable iff φ is a contradiction.

GENIE: "Because you freed me from the
lamp, I grant unto you one wish."

ME: "Can I wish for anything?"
GENIE: "Yes, anything."
ME: "Literally anything?"
GENIE: "Literally anything."
ME: "And you'll do it?"
GENIE: "I'm a genie, it's what I do."
ME (after some thought): "I wish for this wish to not be granted."
GENIE: "But wait! I can only grant your wish by not granting it, but
by not granting it I'm actually granting it, but that means I have to
not grant it, so...LOGIC ERROR...DOES NOT COMPUTE..." (explodes)

Representations of Formulas

Chapter 2 of Textbook

• Normal Forms, Section 2.5 pp. 121-
127

➢ Disjunctive Normal Form (DNF)

➢ Conjunctive Normal Form (CNF)

• Expression Trees, page 94 of text

• Combinatorial Circuits, using gates to
represent formulas, page 98

Normal Forms

Formula f

Disjunctive Normal Form (DNF), pp. 122-125

Formula f is expression as a disjunction of clauses,
where each clause is a conjunction of positive and
negative literals.

Conjunctive Normal Form (CNF), pp. 125-127

Formula f is expressed as a conjunction of clauses,
where each clause is a disjunction of positive and
negative literals.

Disjunctive Normal Form (DNF)

3

p q r f Clause

Conjunction

F F F p  q  r

F F T p  q  r

F T F p  q  r

F T T p  q  r

T F F p  q  r

T F T p  q  r

T T F p  q  r

T T T p  q  r

T

F

T

T

F

F

T

T

f  (pqr)  (pqr)  (pqr)  (pqr)  (pqr)

Conjunctive Normal Form (CNF)

4

p q r f f Clause

Conjunction

F F F p  q  r

F F T p  q  r

F T F p  q  r

F T T p  q  r

T F F p  q  r

T F T p  q  r

T T F p  q  r

T T T p  q  r

T

F

T

T

F

F

T

T

First put negation of formula in DNF:

f  (p  q  r)  (p  q  r)  (p  q  r)

F

T

F

F

T

T

F

F

Conjunctive Normal Form (CNF) cont’d

5

f  (p  q  r)  (p  q  r)  (p  q  r)

f (f)

((p  q  r)  (p  q  r)  (p  q  r))

(apply De Morgan’s Law for )

(p  q  r)  (p  q  r)  (p  q  r))

(apply De Morgan’s Law for  to each clause)

 (p  q  r)  (p  q  r)  (p  q  r))

 (p  q  r)  (p  q  r)  (p  q  r)

Formula f is now expressed in CNF as a conjunction of
clauses, where each clause is a disjunction of positive and
negative literals.

Put following formula f in DNF:

(p  q)  (p  r)

6

Put same formula f in CNF:

(p  q)  (p  r)

7

CNF SAT and NP-complete

CNF SAT is the quintessential NP-complete
problem.

P = NP? Most important problem in computer
science and mathematics.

We will discuss in the next lecture.

Other representations of
Formulas

• Expression Trees, page 94 of text

• Combinatorial Circuits, using gates to
represent formulas, page 98

Expression Trees

PSN. Give the expression tree for the
formula

(((p  q)  (r))  (q  r))

Gates to represent formulas

OR, AND and NOT Gates

Combinatorial Circuit

A set of gates is called a combinatorial
circuit or combinatorial network.

PSN. Obtain formula associated with the
above combinatorial circuit.

Predicate Logic

• Predicate logic is an extension of
propositional logic that permits concisely
reasoning about whole classes of entities.

• Propositional logic (recall) treats simple
propositions (sentences) as atomic entities.

• In contrast, predicate logic distinguishes the
subject of a sentence from its predicate.

– Remember these English grammar terms?

Predicate Logic

• Predicate logic is the foundation of the
field of mathematical logic, which
culminated in Gödel’s incompleteness
theorem, which revealed the ultimate
limits of mathematical thought:
– Given any finitely describable, consistent

proof procedure, there will always remain some
true statements that will never be proven
by that procedure.

• i.e., we can’t discover all mathematical truths,
unless we sometimes resort to making guesses.

Predicate Logic

Kurt Gödel
1906-1978

Subjects and Predicates

• In the sentence “The dog is sleeping”:

– The phrase “the dog” denotes the subject -
the object or entity that the sentence is about.

– The phrase “is sleeping” denotes the predicate-
a property that is true of the subject.

• In predicate logic, a predicate is modeled as
a function P(·) from objects to propositions.

– P(x) = “x is sleeping” (where x is any object).

Predicate Logic

More About Predicates

• Convention: Lowercase variables x, y, z... denote
objects/entities; uppercase variables P, Q, R…
denote propositional functions (predicates).

• Keep in mind that the result of applying a
predicate P to an object x is the proposition P(x).
But the predicate P itself (e.g. P = “is sleeping”) is
not a proposition (not a complete sentence).

– E.g. if P(x) = “x is a prime number”,
P(3) is the proposition “3 is a prime number.”

Predicate Logic

Universes of Discourse (U.D.s)

• The power of distinguishing objects from
predicates is that it lets you state things
about many objects at once.

• E.g., let P(x)=“x+1>x”. We can then say,
“For any number x, P(x) is true” instead of
(0+1>0)  (1+1>1)  (2+1>2)  ...

• The collection of values that a variable x
can take is called x’s universe of discourse.

Predicate Logic

Quantifier Expressions

• Quantifiers provide a notation that allows
us to quantify (count) how many objects in
the univ. of disc. satisfy a given predicate.

• “” is the FORLL or universal quantifier.
x P(x) means for all x in the u.d., P holds.

• “” is the XISTS or existential quantifier.
x P(x) means there exists an x in the u.d.
(that is, 1 or more) such that P(x) is true.

Predicate Logic

The Universal Quantifier 

• Example:
Let the u.d. of x be parking spaces at UC.
Let P(x) be the predicate “x is full.”
Then the universal quantification of P(x), x P(x),
is the proposition:

– “All parking spaces at UC are full.”
– i.e., “Every parking space at UC is full.”
– i.e., “For each parking space at UC, that space

is full.”

Predicate Logic

The Existential Quantifier 

• Example:
Let the u.d. of x be parking spaces at UC.
Let P(x) be the predicate “x is full.”
Then the existential quantification of P(x),
x P(x), is the proposition:

– “Some parking space at UC is full.”
– “There is a parking space at UC that is full.”
– “At least one parking space at UC is full.”

Predicate Logic

Calculus Example

• One way of precisely defining the calculus
concept of a limit, using quantifiers:

()

() ()






−→−



=
→




|)(|||

::0:0

)(lim

Lxfax

x

Lxf
ax

Predicate Logic

Good Ole Days

No one uses logic anymore.

I miss the Godel days.

NP-Completeness

Textbook reading:

Section 2.5.6, Page 129

1

Hamiltonian Cycle

Sir William Rowen Hamilton’s Icosian Game

2

Goal of Icosian Game

Vertices of the icosahedron represent cities. The
goal is to perform a tour of the 20 cities and return
to the starting vertex, following an edge of the
icosahedron to move between two cities.

This is done by placing pegs on the board so that Peg
i and Peg i + 1, i = 1, 2, …, 19, and Peg 20 and Peg 1
are on adjacent positions, i.e., end vertices of an
edge of the icosahedron.

Can you solve the problem?

3

Solution to Icosian Game

Solution involves finding a Hamiltonian cycle in

the icosahedron:

4

Coloring Problem

Given k colors, color the vertices of a graph so
that every edge is properly colored, i.e., both
ends of the edge are colored differently. Below
is a properly vertex 3-colored graph.

5

Clique Problem

Consider the Friendship Network on Facebook, i.e., the

vertex set V are users of Facebook and the edges set E

consists of all pairs of people that are friends. A clique

is a group of people, such that every pair are friends,

i.e., form a clique. In graph theory, a k-clique is a subset

of k vertices that that every pair is joined with an edge.

Given a positive integer k, does there exists a k-clique,

i.e., k people, such that every pair are friends.

6

Sum of Subsets

Given the input integers A = {a0, a1, . . . , an-1},

and the target sum c, is there are subset of the

integers whose sum equals c?

7

No Worst-Case Polynomial-Time

Algorithms Known

Mathematicians worked for years on trying to

obtain efficient algorithms for solving these

problems in general and many other natural

problems without success. In fact, to this day, no

known worst-case polynomial algorithms are

known for solving any of them. It turns out that

they are all NP-hard.

8

Decision version of the problem

The decision version of a problem asks whether a
solution to the problem exists, “yes” or “true” if its
exists, “no” or “false”, otherwise. For example,

• Does graph G contain a Hamiltonian cycle?

• Can graph G be properly vertex 3-colored?

• Does graph G contain a k-clique?

• Does there exists a subset of a set A whose
elements sum to c?

9

Class P

A decision problem is in P if it can be solved with

a polynomial-time algorithm, i.e., an algorithm

that for any input of size n can be solved in

polynomial time, i.e., in time at most nk for

some positive integer k.

These problems are sometimes called tractable.

The class P is the set of all such problems.

10

Class NP

NP stands for nondeterministic polynomial. It applies to decision problems.

Given a decision problem, we associate a certificate with the problem.

Examples:

Hamiltonian Cycle Problem. Certificate is sequence of n distinct vertices:

“yes-certificate” if it is corresponds to a Hamiltonian cycle; otherwise “no-

certificate”.

3-Coloring Problem. Certificate is 3-coloring of vertices: “yes-certificate” if it
is a proper coloring; otherwise, it is a “no-certificate”.

Clique Problem. Certificate is subset of k vertices: “yes-certificate” if it is a k-

clique; otherwise it is a “no-certificate”.

Sum of Subsets Problem. Certificate is a subset S of A: “yes-certificate” if the
elements of A sum to c; otherwise it is a “no-certificate”.

11

High-Level Pseudocode for NP

function NPAlgorithm(A,I)

Input: A (a decision problem), I (an instance of problem A)

Output: “yes” or “don’t know”
1. In polynomial time, guess a candidate certificate C for the

problem A

2. In polynomial time, use C to deterministically verify that I is
a yes instance.

if a yes instance is verified in step 2 then

return (“yes”)
else

return(“don’t know”)
endif

end NPAlgorithm

12

NP algorithms

Hamiltonian Cycle Problem. Certificate is sequence of n distinct vertices 𝑢1, 𝑢2 , … , 𝑢𝑛
in the graph G. It can be verified in time n whether this certificate is a “yes-certificate”,
i.e., is a Hamiltonian cycle by simply checking that {ui,ui+1}, i = 1, 2, …, n – 1, and {un,u1},

are all edges of G.

Coloring Problem. It can be verified whether a 3-coloring is proper in time m, where m

is the number of edges of G, by scanning all the edges to see whether both end

vertices of the edge are colored the same.

Clique Problem. It can be verified whether a subset of k vertices forms a k-clique in

time k(k – 1)/2 by checking whether every pair of vertices of the subset is adjacent in

G.

Sum of Subsets Problem. It can be verified whether the elements of a subset S of a set

A of size n sum to c by performing |S| – 1 < n additions.

For each of these problems a candidate certificate that is guessed can be verified to be

a yes-certificate or no-certificate in polynomial time, so they are all in NP.

13

Polynomial-Time Reducibility

Given two decision problems A and B, we say that A is
(polynomially) reducible to B, denoted A  B, if there is
a mapping f from the inputs to problem A to the inputs
to problem B, such that

1. The function f can be computed in polynomial time
(that is, there is a polynomial algorithm that for
input I to problem A outputs the input f(I) to
problem B), and

2. the answer to a given input I to problem A is yes if,
and only if, the answer to the input f(I) to problem B
is yes.

14

Properties of Reduction Relation 

• The relation  is transitive; that is, if

A  B and B  C then A  C.

• If A  B and B has polynomial

complexity, then so does A.

15

Crazy Definition?

A problem B is NP-complete, if it is in NP
and any problem A in NP is reducible to B,
i.e., A  B.

At first, this definition may seem crazy,
because it suggests that you can use B to
solve every other problem in NP? It would
mean that if B is in P, every NP problem is
in P, i.e., P = NP.

16

NP-Complete Problems Exist!

Surprising it was shown by Stephen

Cook and independently by Leonid

Levin, that NP-complete problems

exist!

17

Most Famous Theorem in all of

Mathematics and Computer Science

Cook–Levin Theorem. CNF SAT is NP-complete.

Discovered independently by Stephen Cook and
Lenoid Levin in 1971.

18

The Reduction CNF SAT  CNF 3-SAT.

19

Consider any instance of CNF SAT

I = C1  C2  . . .  Cm.

Ci is of the form 𝑦1 ∨ ⋯∨ 𝑦𝑗 where𝑦1, … , 𝑦𝑗 ∈ 𝑥1, … , 𝑥𝑛 ∪ { ҧ𝑥1, … , ҧ𝑥𝑛} and ҧ𝑥𝑖 = ¬𝑥𝑖
We need to construction a reduction f mapping an

input I of CNF SAT to an input I’ of CNF 3-SAT, so that I is

satisfiable iff I’ is satisfiable.

PSN.

a) for a clause C of size 1, i.e., C is x (where x is a
positive or negative literal), find a conjunction of
clauses of size 3 that is logically equivalent using new
variables y and z.

b) for a clause C of size 2, i.e., C is 𝑥 ∨ 𝑦 (where x and
y are positive or negative literals), find a conjunction
of clauses of size 3 that is logically equivalent using
new variable z.

20

Reduction from CNF SAT to CNF 3-SAT

We construct instance I’ of CNF 3-SAT from instance I of SAT by
replacing clauses of size 1 and 2 using the logically equivalent
conjunction of clauses from PSN problem we just did.
Otherwise, we replace Ci = 𝑦1 ∨ ⋯∨ 𝑦𝑗 with

f = (𝑦1∨ 𝑦2 ∨ 𝑧1)(ҧ𝑧1∨ 𝑦3 ∨ 𝑧2)(ҧ𝑧2∨ 𝑦4 ∨ 𝑧3)(ҧ𝑧2∨ 𝑦5 ∨ 𝑧3)⋯(ҧ𝑧𝑗−2∨ 𝑦𝑗−1 ∨ 𝑦𝑗)
If I is satisfiable then at least one of 𝑦1, … , 𝑦𝑗 are true, and the zi’s
can be chosen so the formula f is true. On the other hand if I is
not satisfiable, then for any truth assignment some clause Ci is
false, i.e., the literals 𝑦1, … , 𝑦𝑗 are all false. In which case no
matter what values are chosen for the variables zi, f has the value
false, so that I’ is not satisfiable (convince yourself of this).

21

NP-complete

Hundreds of natural and important

problems have been shown to be NP-

complete, including Vertex Coloring

and Sum of Subsets. In fact, the

coloring problem is NP-complete even

for 3 colors.

22

NP-Hard.

A problem, not necessary a decision problem, is
NP-hard, if it could be applied to solve an NP-
complete problem in polynomial time, i.e., it is
at least as difficult as an NP-complete problem.

There are thousands of important and practical
problems that are known to be NP-hard. In
fact, most algorithmic problems that are
encountered in practice in science and
engineering are NP-hard.

23

P = NP?

• This is one of the most celebrated and important
problems in all of computer science and
mathematics.

• To show P = NP, all you would have to do is design a
polynomial-time algorithm for one NP-complete
problem.

• Some of the greatest minds in mathematics and
computer science have tried to crack this problem
for about 50 years now, without success.

• The conjecture these days is that P ≠ NP.

24

Bagel Challenge

If you solve the problem of whether P = NP,

you will get an A in the course.

and write you are check for

25

Functions

Textbook Reading

Chapter 4, pp. 219-235

Section 4.6, pp. 253-257 (Pigeonhole Principle)

1

Definition of a function

• A function is a binary relation between two

sets A (domain) and B (co-domain), i.e., a

subset of A×B, so that each element in A

occurs in exactly one pair.

• A function takes an element from a set and

maps it to a UNIQUE element in another set.

2

Examples of functions

3

1

2

3

4

5

“a”
“bb“

“cccc”
“dd”
“e”

A string length function

A

B

C

D

F

Alice

Bob

Chris

Dave

Emma

A class grade function

Domain Co-domain

A pre-image

of 1

The image

of A

Not a function

4

1

2

3

4

5

“a”
“bb“

“cccc”
“dd”
“e”

Range

5

1

2

3

4

5

a

e

i

o

u

Some function…

Range

Function arithmetic

• Let f1(x) = 2x

• Let f2(x) = x2

• f1+f2 = (f1+f2)(x) = f1(x)+f2(x) = 2x+x2

• f1*f2 = (f1*f2)(x) = f1(x)*f2(x) = 2x*x2 = 2x3

6

One-to-one functions

• A function is one-to-one if each element in the

range has a unique pre-image

7

1

2

3

4

5

a

e

i

o

A one-to-one function

1

2

3

4

5

a

e

i

o

A function that is

not one-to-one

More on one-to-one

• Injective is synonymous with one-to-one

– “A function is injective”
• A function is an injection if it is one-to-one

• Note that there can

be un-used elements

in the co-domain

8

1

2

3

4

5

a

e

i

o

A one-to-one function

Onto functions

• A function is onto if each element in the co-

domain is an image of some pre-image

9

1

2

3

4

5

a

e

i

o

A function that

is not onto

1

2

3

4

a

e

i

o

u

An onto function

More on onto

• Surjective is synonymous with onto

–“A function is surjective”
• A function is a surjection if it is onto

• Note that there can
be multiply used
elements in the
co-domain

10

1

2

3

4

a

e

i

o

u

An onto function

Onto vs. one-to-one

• Are the following functions onto, one-to-one,

both, or neither?

11

1

2

3

4

a

b

c

1

2

3

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

1-to-1, not onto

Onto, not 1-to-1

Both 1-to-1 and onto Not a valid function

Neither 1-to-1 nor onto

Bijections

• Consider a function that is

both one-to-one and onto:

• Such a function is a bijection

12

1

2

3

4

a

b

c

d

Identity functions

• A function such that the image and the pre-

image are ALWAYS equal

• f(x) = 1*x

• f(x) = x + 0

• The domain and the co-domain must be the

same set

13

Inverse functions

14

R Rf

4.3 8.6

Let f(x) = 2*x

f-1

f(4.3)

f-1(8.6)

Then f-1(x) = x/2

More on inverse functions

• Can we define the inverse of the following functions?

• An inverse function is ONLY defined on a bijection

15

1

2

3

4

a

b

c

1

2

3

a

b

c

d

What is f-1(2)?

Not onto!

What is f-1(2)?

Not 1-to-1!

Compositions of functions

• Let (f ∘ g)(x) = f(g(x))

• Let f(x) = 2x+3 Let g(x) = 3x+2

• g(1) = 5, f(5) = 13

• Thus, (f ∘ g)(1) = f(g(1)) = 13

16

Compositions of functions

17

g f

f ○ g

g(a) f(a)

(f ○ g)(a)

g(a)
f(g(a))a

A B C

Compositions of functions

18

g f

f ○ g

g(1) f(5)

(f ○ g)(1)

g(1)=5

f(g(1))=13
1

R R R

Let f(x) = 2x+3 Let g(x) = 3x+2

f(g(x)) = 2(3x+2)+3 = 6x+7

Compositions of functions

Does f(g(x)) = g(f(x))?

Let f(x) = 2x+3 Let g(x) = 3x+2

f(g(x)) = 2(3x+2)+3 = 6x+7

g(f(x)) = 3(2x+3)+2 = 6x+11

Function composition is not commutative!

19

Not equal!

PSN: Matrix Multiplication

Consider the functions (linear transformations)

𝐴 𝑥1, 𝑥2 = 𝑎00 𝑎01𝑎10 𝑎11 𝑥0𝑥1 = 𝑎00𝑥0 + 𝑎01𝑥1𝑎10𝑥0 + 𝑎11𝑥1
𝐵 𝑥1, 𝑥2 = 𝑏00 𝑏01𝑏10 𝑏11 𝑥0𝑥1 = 𝑏00𝑥0 + 𝑏01𝑥1𝑏10𝑥0 + 𝑏11𝑥1
Compute 𝐴 ∘ 𝐵. Discuss.

20

Matrix Multiplication corresponds to

composition of linear function

The matrix product of a p×q matrix A and a
q×r matrix B corresponds to the
composition of a linear transformation A
from Rp to Rq and a linear transformation B
from Rq to Rr where Rp, Rq, Rr denote the
set of all vectors of dimensions p, q and r,
respectively.

21

Inverse of Composition

PSN. Let f be an invertible function

from Y to Z and g be an invertible

function from X to Y.

Show that the inverse of 𝑓 ∘ 𝑔 is:(𝑓 ∘ 𝑔)−1= 𝑔−1 ∘ 𝑓−1
22

Floor, Ceiling and Round Functions

• Floor: x means take the greatest integer less

than or equal to the number

• Ceiling: x means take the lowest integer

greater than or equal to the number

• round(x) = floor(x + 0.5)

23

The Pigeonhole Principle

or Dirichlet's drawer principle

• Suppose a flock of pigeons fly into a set of
pigeonholes to roost.

• If there are more pigeons than pigeonholes, then
there must be at least 1 pigeonhole that has more
than one pigeon in it.

• If k+1 or more objects are placed into k drawers,
then there is at least one drawer containing two or
more of the objects.

24

25

//upload.wikimedia.org/wikipedia/commons/5/5c/TooManyPigeons.jpg

Pigeonhole Principle Examples

• In a group of 367 people, there must be two

people with the same birthday.

– There are 366 possible birthdays.

• In a group of 27 English words, at least two

words must start with the same letter.

– There are 26 letters.

26

Generalized Pigeonhole Principle

If N pigeons fly into k pigeonholes, then there is

at least one pigeonhole containing N/k
pigeons.

Why is this true?

27

Solution

Let P denote the maximum number of pigeons in

a pigeonhole.

The average number of pigeons in a pigeonhole is

N/k.

P must be at least as great as the average, i.e.,

P ≥ N/k.

But P is an integer, therefore,

P ≥ N/k .
28

Joke only programmers will get

Why did the functions stop calling each
other?

Ans: Because they had too many arguments.

29

Relations

Textbook Reading:

Chapter 3, pp. 157-174.

Binary Relations

• Binary relations represent relationships
between the elements of two sets.

• A binary relation R on set A and B is
defined by: R  A  B

• If (a,b)  R, we write:

aRb (a is related to b by R)

• If (a,b)  R, we write:

(a is not related to b by R)𝑎𝑅𝑏

Binary Relations

• A binary relation is represented by a set of
ordered pairs.

• If A = {a, b} and B = {1, 2, 3}, then a
relation R1 from A to B might be, for
example, R1 = {(a,2), (a,3), (b,2)}.

• The first element in each ordered pair
comes from set A, and the second element
in each ordered pair comes from set B.

Example

A = {0,1,2}

B = {a,b}

A  B = {(0,a), (0,b), (1,a), (1,b), (2,a), (2,b)}

Then R = {(0,a), (0,b), (1,a), (2,b)} is a relation
from A to B.

✓Can we write 0Ra ? yes

✓Can we write 2Rb ? yes

✓Can we write 1Rb ? no

Example

• A binary relation may be represented
graphically or as a table:

0

1

2

a

b

R a b

0 X X

1 X

2 X

We can see that 0Ra but 1Rb./

Functions as Binary Relations

• A function is a binary relation that has the

restriction that each element of A can be

related to exactly one element of B.

1 a

b

1 a

b

Relation Function

Inverse Binary Relation

The inverse binary relation of R denote R-1 is{ 𝑥, 𝑦 : (𝑦, 𝑥) ∈ 𝑅}
PSN. Find the inverse relation of

{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4),
(3,3), (3,4), (4,4)}

Number of Binary Relations

How many binary relations are there for an m element set A
and n element set B?

A binary relation set A and B is a subset of A  B.
Therefore the set of all relations is P(A  B), the power set
of A  B. 𝑃 𝐴 × 𝐵 = 2|𝐴×𝐵|
Now 𝐴 × 𝐵 = 𝐴 × 𝐵 = 𝑚𝑛
Therefore, 𝑃 𝐴 × 𝐵 = 2|𝐴×𝐵| = 2𝑚𝑛.

Binary Relations on a Set

• Relations can also be from a set to itself.

• A relation on the set A is a relation from set
A to set A, i.e., R  A  A

• Let A = {1, 2, 3, 4}

•Which ordered pairs are in the relation
R = {(a,b) | a divides b}?

• R = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4),
(3,3), (4,4)}

Binary Relations on a Set, cont’d

• Which of these relations (on the set of integers)
contain each of the pairs (1,1), (1,2), (2,1), (1,-1),
and (2,2)?

R1 = {(a,b) | a  b}
R2 = {(a,b) | a > b}
R3 = {(a,b) | a = b, a = −b}
R4 = {(a,b) | a = b}
R5 = {(a,b) | a = b + 1}
R6 = {(a,b) | a + b  3}

Binary Relations on a Set, cont’d
R1 = {(a,b) | a  b}
R2 = {(a,b) | a > b}
R3 = {(a,b) | a = b, a = −b}
R4 = {(a,b) | a = b}
R5 = {(a,b) | a = b + 1}
R6 = {(a,b) | a + b  3}

• The pair (1,1) is in R1, R3, R4 and R6

• The pair (1,2) is in R1 and R6

• The pair (2,1) is in R2 , R5 and R6

• The pair (1,-1) is in R2 , R3 and R6

• The pair (2,2) is in R1 , R3 and R4

Graphs

The edge set of a graph determines a
symmetric binary relation on the set of
vertices called an adjacency relation.

Relation on set V corresponds to the
edge set of a digraph with vertex set V

Relation {(A,B),(B,C),(C,D),(E,D),(E,F)} on
set {A,B,C,D,E,F}

Number of Relations on a Set

How many relations are there on a set with n elements?

A relation on a set A is a subset of A  A. Therefore the set
of all relations is P(A  A), the power set of A  A.𝑃 𝐴 × 𝐴 = 2|𝐴×𝐴|
Now 𝐴 × 𝐴 = |𝐴| × 𝐴 = 𝑛 × 𝑛 = 𝑛2
Therefore, 𝑃 𝐴 × 𝐴 = 2|𝐴×𝐴| = 2𝑛2 .

Example

•How many relations are there on set S = {a, b, c}?

•There are 3 elements in set S, so S  S has 32 = 9
elements.

•Therefore, there are 29 = 512 different relations on the set
S = {a, b, c}.

Reflexive

• Let R be a relation on set A.

• R is reflexive if:

(a, a)  R for every element a  A.

Reflexive cont’d

•Which of these is reflexive?
R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}
R2 = {(1,1), (1,2), (2,1)}
R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)}
R4 = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)}
R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}
R6 = {(3,4)}

• The relations R3 and R5 are reflexive because
they contain all pairs of the form (a,a); the
other don’t [they are all missing (3,3)].

Symmetric

• Let R be a relation on set A.

• R is symmetric if:

(b, a)  R whenever (a, b)  R,
where a, b  A.

A relation is symmetric iff “a is related to b”
implies that “b is related to a”.

Symmetric cont’d

•Which of these is symmetric?
R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}
R2 = {(1,1), (1,2), (2,1)}
R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)}
R4 = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)}
R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}
R6 = {(3,4)}

• The relations R2 and R3 are symmetric
because in each case (b,a) belongs to the
relation whenever (a,b) does.
• The other relations aren’t symmetric.

Antisymmetric

• Let R be a relation on set A.

• R is antisymmetric if whenever (a, b)  R and

(b, a)  R, then a = b, where a, b  A.

• A relation is antisymmetric iff there are no pairs

of distinct elements with a related to b and b

related to a. That is, the only way to have a

related to b and b related to a is for a and b to be

the same element.

• Symmetric and antisymmetric are NOT exactly

opposites.

Asymmetric vs. Antisymmetric

• Let R be a relation on set A.

• R is asymmetric if (a, b)  R implies (b,a)  R

• The relation < on the set of real numbers is
asymmetric.

• R is antisymmetric if (a, b)  R and (b,a)  R
implies a = b.

• The relation ≤ on the set of real numbers is
antisymmetric.

Example

• Which of these is antisymmetric?

R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}
R2 = {(1,1), (1,2), (2,1)}
R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)}
R4 = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)}
R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}
R6 = {(3,4)}

• The relations R4, R5 and R6 are antisymmetric because there is

no pair of elements a and b with a  b such that both (a,b)
and (b,a) belong to the relation.

• The other relations aren’t antisymmetric.

Transitivity

Let R be a relation on set A.

R is transitive if whenever (a ,b)  R and
(b, c)  R, then (a, c)  R, where a, b, c  A.

Example

• Which of these is transitive?

R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}
R2 = {(1,1), (1,2), (2,1)}
R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)}
R4 = { (2,1), (3,1), (3,2), (4,1), (4,2) , (4,3)}
R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}
R6 = {(3,4)}

• The relations R4, R5 and R6 are transitive because if (a,b) and
(b,c) belong to the relation, then (a,c) does also.

• The other relations aren’t transitive.

Combining Relations

Relations from A to B are subsets of A  B.

For example, if A = {1, 2} and B = {a, b}, then

A  B = {(1, a), (1, b), (2, a), (2, b)}

Two relations from A to B can be combined in
any way that two sets can be combined.
Specifically, we can find the union,
intersection, exclusive-or, and difference of
the two relations.

Combining Relations cont’d

Let A = {1, 2, 3} and B= {1, 2, 3, 4}, and suppose we
have the relations:

R1 = {(1,1), (2,2), (3,3)}

R2 = {(1,1), (1,2), (1,3), (1,4)}.

Then we can find the union, intersection, and difference
of the relations:

R1  R2 = {(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)}

R1  R2 = {(1,1)}

R1 - R2 = {(2,2), (3,3)}

R2 - R1 = {(1,2), (1,3), (1,4)}

Composition of Relations

• Composition of relations generalizes
composition of functions.

• If R1 is a relation from A to B and R2 is a
relation from B to C, then the composition of
R1 with R2 (denoted R2R1) is the relation from
A to C

• It is defined by: (a, b) is a member of R1 and
(b, c) is a member of R2, then (a, c) is a
member of R2  R1, where a  A, b  B, c  C.

Example

• Let A={1,2,3}, B={w,x,y,z}, C={A,B,C,D}

R1={(1,z),(2,w)}, R2={(w,B),(w,D),(x,A)}

• Find R2  R1

• Match (a,b) ∈ R1 with (b,c) ∈ R2 to get (a,c) ∈ R2  R1

• R2’s b’s are w and x; R1’s b’s are z and w

• Only the w’s match; R1 has only 1 w pair, (2,w)

• So the (a, c) pairs will include 2 from R1 and B and D
from R2: (2, B), (2, D)

PSN

Given the following relations, find R  S:
R = {(1,0),(2,0), (3,1), (3,2), (4,1)}
S = {(1,1), (1,4), (2,3), (3,1), (3,4)}

Construct the ordered pairs in R  S as follows:

for each ordered pair (s1,s2) in S

for each ordered pair (r1,r2) in R

if s2 = r1 then

(s1,r2) belongs to R  S

Inverse of Composition of Relations𝑅  𝑆 −1 = 𝑆−1 𝑅−1
Example

R = {(1,0),(2,0), (3,1), (3,2), (4,1)}

S = {(1,1), (1,4), (2,3), (3,1), (3,4)}

R  S = {(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)}

𝑅−1 = {(0,1),(0,2), (1,3), (2,3), (1,4)}𝑆−1 = {(1,1), (4,1), (3,2), (1,3), (4,3)}

(R  S) -1 = {(0,1), (1,1), (1,2), (2,2), (0,3), (1,3)} = 𝑆−1 𝑅−1

The Powers of a Relation

• The powers of a relation R are recursively defined
from the definition of a composite of two relations.

• Let R be a relation on the set A. The powers Rn,
for n = 1, 2, 3, … are defined recursively by:

R1 = R
Rn+1 = Rn  R :

So:
R2 = R  R
R3 = R2  R = (R  R)  R
etc.

PSN. Let R = {(1,1), (2,1), (3,2), (4,3)}

Find the powers Rn , where n = 1, 2, 3, 4, 5

Transitivity

It follows from the definition of transitivity
that

A relation R on a set A is transitive iff

Rn  R for n = 1, 2, 3, 4, …
For example, we showed the following
relationship was transitive

R = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3),
(2,4), (3,3), (3,4), (4,4)}

Check that R2 = R.

Transitive Closure

• Let R be a relation on a set A of size n.

• The transitive closure of R is obtained by repeatedly adding

the pair (x,z) whenever there is a pair (x,y) and (y,z) until for

every pair (x,y) and (y,z) the pair (x,z) is in the relation.

• For example, if A = {a,b,c} and R = {(a,b),(b,c),(c,d)}, then the

transitive closure is {(a,b),(b,c),(c,d),(a,c),(b,d),(a,d)}.

• The transitive closure equals 𝑅1 ∪ 𝑅2 ∪⋯∪ 𝑅𝑛−1.

• If R is reflexive then 𝑅𝑖−1 ⊆ 𝑅𝑖 , 𝑖 = 2, 3, … , 𝑛 − 1. It follows

that 𝑅𝑛−1 is the transitive closure.

Why was the cell phone wearing glasses?

Answer. It lost its contacts.

Equivalence Relations and Partial Orders

Textbook reading:

Chapter 3, Section 3.6, pp. 181-187

Section 3.8, pp. 191-195

Equivalence Relations

A relation on set A is called an equivalence

relation if it is:

• reflexive

• symmetric, and

• transitive

Equivalence Relations

Two elements a and b that are related by
an equivalence relation are said to be
equivalent.

Example – Equivalence Relation

Let R be a relation on set A, where A = {1, 2, 3, 4, 5} and R =

{(1,1), (2,2), (3,3), (4,4), (5,5), (1,3), (3,1)}

Is R an equivalence relation?

• Reflexive – it contains{(1,1), (2,2), (3,3), (4,4), (5,5)

• Symmetric – it contains both (1,3) and (3,1)

• Transitive – for each pair of pairs (x,y) and (y, z) in R, the

pair (x,z) is also in R.

Yes, it is an equivalence relation.

Example – Congruence modulo m

Let R = {(a, b) | a  b (mod m)} be a relation on the set of
integers and m be a positive integer > 1.

Is R an equivalence relation?

• Reflexive – is it true that a  a (mod m)}? yes

• Symmetric – is it true that if a  b (mod m) then
b  a (mod m)? yes

• Transitive - is it true that if a  b (mod m) and b
 c (mod m) then a  c (mod m)? yes

Example – Strings

R is the relation on the set of strings of
English letters such that aRb iff l(a) = l(b),
where l(x) is the length of the string x.

Is R an equivalence relation?

Example – Strings cont’d

Since l(a) = l(a), then aRa for any string a. So R is
reflexive.

Suppose aRb, so that l(a) = l(b). Then it is also true that
l(b) = l(a), which means that bRa. Consequently, R is
symmetric.

Suppose aRb and bRc. Then l(a) = l(b) and l(b) = l(c).
Therefore, l(a) = l(c) and so aRc. Hence, R is transitive.

Therefore, R is an equivalence relation.

Equivalence Classes

Let R be a equivalence relation on set A.

The set of all elements that are related to an
element a of A is called the equivalence class
of a.

The equivalence class of a with respect to R is:
[a]R = {s | (s, a)  R}

•When only one relation is under
consideration, we will just write [a].

Equivalence Classes cont’d

If R is a equivalence relation on a set A, the
equivalence class of the element a is:

[a]R = {s | (s, a)  R}
If b  [a]R , then b is called a representative of
this equivalence class.

Equivalence Classes – Example 1

Let R be the relation on the set of integers such
that aRb iff a = b or a = -b. We can show that
this is an equivalence relation.

The equivalence class of element a is
[a] = {a, -a}

Examples:
[7] = {7, -7}
[-5] = {5, -5}
[0] = {0}

Equivalence Classes – Example 2

Consider the equivalence relation R on set A. What are the
equivalence classes?

A = {1, 2, 3, 4, 5}

R = {(1,1), (2,2), (3,3), (4,4), (5,5), (1,3), (3,1)}

Just look at the aRb relationships. Which elements are related to
which?

[1] = {1, 3} [2] = {2}

[3] = {3, 1} [4] = {4}

[5] = {5}

[1] and [3] are the same equivalence classes.

Equivalence Classes – Example 3

Consider set

A = {“hello”, “world”, “CS”, “discrete”, “Hi”, “joe”, “text”, “math”,
“sting”, “purple”, “doe”, “bye”}.

Equivalence class on A for relation aRb whenever a and b have
the same size:

[“hello”] = {“hello”, “world”, “sting”}

[“math”] = {“text”, “math”}

[“CS”] = {“CS”, “Hi”}

[“discrete”] = {“discrete”}

[“joe”] = {“joe”, “doe”, “bye”}

[“purple”] = {“purple”}

Partitions

A partition of a set A divides A into non-
overlapping subsets:

➢A partition of a set A is a collection of
disjoint nonempty subsets of A that have A as
their union.

Set A

A
1 A

6

A
5

A
4

A
3

A
2

Partitions – Example 1

S = {a, b, c, d, e, f }

S1 = {a, d, e}

S2 = {b}

S3 = {c, f }

P = {S1, S2, S3}

P is a partition of set S

Partitions – Example 2

If S = {1, 2, 3, 4, 5, 6}, then

A1 = {1, 3, 4}

A2 = {2, 5}

A3 = {6}

form a partition of S, because:
• these sets are disjoint
• the union of these sets is S.

Violating Partition Property – Not Disjoint

S = {1, 2, 3, 4, 5, 6}

A1 = {1, 3, 4, 5}

A2 = {2, 5}

A3 = {6}

Does not form a partition of S, because these
sets are not disjoint (5 occurs in two different
sets)

Violating Partition Property – Union is not S

S = {1, 2, 3, 4, 5, 6}

A1 = {1, 3}

A2 = {2, 5}

A3 = {6}

Do not form a partition of S, because the
union of these sets is not S (since 4 is not a
member of any of the subsets, but is a
member of S).

Violating Partition Property – element not in S

If S = {1, 2, 3, 4, 5, 6}, then

A1 = {1, 3, 4}

A2 = {2, 5}

A3 = {6, 7}

Do not form a partition of S, because 7 is a
member of set A3 but is not a member of S.

Partitions and Equivalence Relations

• Let R be an equivalence relation on set S

• Then the equivalence classes of R form a
partition of S.

• Conversely, let P = {Ai | i  I } be a partition
of set S.

• Then there is an equivalence relation R that has
the sets Ai (i  I) as its equivalence classes.

PSN. Define the equivalence relation R
corresponding to P and prove its an
equivalence relation.

Constructing an Equivalence Relation from a
Partition

Given set S = {1, 2, 3, 4, 5, 6} and a
partition of S

A1 = {1, 2, 3}

A2 = {4, 5}

A3 = {6}

find the ordered pairs that make up the
equivalence relation R produced by that
partition.

Constructing an Equivalence Relation from a
Partition

Let’s find the ordered pairs that are in R:
A1 = {1, 2, 3} → (1,1), (1,2), (1,3), (2,1), (2,2),

(2,3), (3,1), (3,2), (3,3)

A2 = {4, 5} → (4,4), (4,5), (5,4), (5,5)

A3 = {6} → (6,6)

So R is just the set consisting of all these
ordered pairs:

R = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2),
(3,3), (4,4), (4,5), (5,4), (5,5), (6,6)}

Partial Order

A relation R on a set S is called a partial
ordering or partial order if it is:

• reflexive

• antisymmetric

• transitive

Partially Ordered Set or Poset

A set S together with a partial ordering R is
called a partially ordered set, or poset, and
is denoted by (S, R).

Example – Poset

Let R be a relation on set A. Is R a partial
order?

A = {1, 2, 3, 4}

R = {(1,1), (1,2), (1,3), (1,4), (2,2),

(2,3), (2,4), (3,3), (3,4), (4,4)}

Example – Poset cont’d
R = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4),

(3,3), (3,4), (4,4)}

To be a partial order, R must be reflexive, antisymmetric, and
transitive.

R is reflexive because R includes (1,1), (2,2), (3,3), (4,4).

R is antisymmetric because for every pair (a,b) in R, (b,a) is
not in R (unless a = b).

R is transitive because for every pair (a,b) in R, if (b,c) is in
R then (a,c) is also in R.

Example – Poset cont’d

So, given

A = {1, 2, 3, 4}

R = {(1,1), (1,2), (1,3), (1,4), (2,2),
(2,3), (2,4), (3,3), (3,4), (4,4)}

R is a partial order, and (A, R) is a poset.

Second Example Poset

Is the “” relation a partial ordering on the set of integers?

• Since a  a for every integer a,  is reflexive

• If a  b and b  a, then a = b. Hence  is anti-
symmetric.

• Since a  b and b  c implies a  c, is transitive.

• Therefore “” is a partial ordering on the set of
integers and (Z, ) is a poset.

⊆ determine a partial order on sets

Consider the power P(A) of A, i.e., P(A) is

the collection of all subsets of A. Then,

the ⊆ relation determines a partial

ordering on P(A) and (P(A), ⊆) is a poset.

It is an easy exercise to verify that ⊆ is

reflexive, antisymmetric and transitive.

Comparable / Incomparable
In a poset the notation a ≼ b denotes (a, b) ∈ R

The “less than or equal to” () is an example of partial ordering

The elements a and b of a poset (S, ≼) are called comparable

if either a≼b or b≼a.

The elements a and b of a poset (S, ≼) are called incomparable

if neither a≼b nor b≼a.

In the poset (Z+, |) where | means divides:

• Are 3 and 9 comparable? Yes; 3 divides 9

• Are 5 and 7 comparable? No; neither divides the other

In the poset (P({1,2,3,4,5}), ⊆)

• Are {2,5} and {1,2,4,5} comparable? Yes; {2,5} ⊆ {1,2,4,5}

• Are {2,3,5} and {1,2,4,5} comparable? No; neither is a subset of the other

Linear Order or Total Order

We said: “Partial ordering” because pairs of
elements may be incomparable.

If every two elements of a poset (S, ≼) are
comparable, then S is called a totally ordered
or linearly ordered set and ≼ is called a total
order or linear order.

A totally ordered set is also called a chain.

Total Order

The poset (Z, ) is totally ordered. Why?

Every two elements of Z are comparable; that
is, a  b or b  a for all integers.

The poset (Z+, |) is not totally ordered
where | means divides. Why?

It contains elements that are incomparable; for
example 5 | 7./

What's a balloon's least favorite type of music?

Pop

Modular Arithmetic

Given integers n and k, upon dividing n by k, we
obtain a quotient q and remainder r given by

n = kq + r

We define n modulo k or simply n mod k to be
the remainder r.

For example,

208 mod 10 = 8 since 208 = 20×10 + 8
45 mod 6 = 3 since 45 = 6×7 + 3
108 mod 13 = 4 since 108 = 13×8 + 4

1

Modular Arithmetic

If both x and y have the same remainder upon dividing by n, we

write

x ≡ y (mod n)

Proposition. x ≡ y (mod n) iff x – y is divisible by n.

For example,

208 ≡ 188 (mod 10). 208 – 108 = 10×10 is divisible by 10

40 ≡ 14 (mod 13). 40 – 14 = 26 = 2×13 is divisible by 13

206 ≡ 342 (mod 17). 206 – 342 = -136 = -8×17 is divisible by 17.

2

Two important properties

(x + y) mod k = ((x mod k) + (y mod k)) mod k

(x × y) mod k = ((x mod k) × (y mod k)) mod k

It follows that we can compute an expression mod k
where the expression is obtained by performing a
sequence of additions and multiplications by reducing the
result mod k after each operation is performed. Thus, an
expression involving a large integer mod k can be
computed by reducing the result of each computation
mod k. This is important in cryptographic applications,
which often involve integers having hundreds, even
thousands, of digits.

3

Equivalence Relation

PSN. Show that the relation R given by xRy

whenever x ≡ y (mod n), i.e., whenever n divides

x – y, is an equivalence relation on the set of Z of

integers.

4

Equivalence Classes

with equivalence classes:

[x] = {…, x – 2n, x – n, x, x + n, x + 2n, …}

of all integers y such that x ≡ y (mod n).

5

Residues mod n

Zn = {0, …, n – 1} of integers (or residues) mod n are

defined the same as over the integers, but the result x

of each operation is reduced by replacing x with the

remainder r when x is divided by n.

Element 𝑥 ∈ {0,1,2, … , 𝑛 − 1} corresponds to the

equivalence class

[x] = {…, x – 2n, x – n, x, x + n, x + 2n, …}

That is, we identify the integers 0, 1, 2, …, n – 1 with

their equivalence classes [0], [1], [2], …, [n – 1].
6

Example: integers mod 4

Z4 = {0, 1, 2, 3}

Elements correspond to classes:

[0] = {…, -8, -4, 0, 4, 8, …}
[1] = {…, -7, -3, 1, 5, 9, …}
[2] = {…, -6, -2, 2, 6, 10, …}
[3] = {…, -5, -1, 3, 7, 11, …}

Addition and Multiplication Tables:

7

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

× 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

PSN. Obtain addition and

multiplication table for n = 7.

8

Zn forms a commutative ring
It is easily verified that Zn satisfies the following commutative

ring properties:

Addition is commutative, associative and every element has an

inverse, so that Zn is a commutative (Abelian) group under

addition:

x + y ≡ y + x (mod n)

(x + y) + z ≡ x + (y + z) (mod n)

x + (– x) ≡ 0 (mod n)

Multiplication is commutative and associative:

x * y ≡ y * x (mod n)

(x * y) * z ≡ x * (y * z) (mod n)

Multiplication distributes over addition:

x*(y + z) ≡ x*y + x*z (mod n) 9

Zn forms a field for n prime

In the case when n is prime, Zn is also a

commutative group under multiplication, so that

it determines a field known as the Galois field of

integers modulo n, denoted by GF(n).

10Évariste Galois

Fermat’s Little Theorem

Theorem (Fermat). Let b and n be positive integers,
where n is prime and b is not divisible by n. Then,

𝑏𝑛−1 ≡ 1 (mod 𝑛).

Proof of Fermat’s Little Theorem𝑍𝑛 – 0 = 1, 2, . . , 𝑛 − 1
Let 𝑓: 𝑍𝑛 – 0 → 𝑍𝑛 – 0 be defined by𝑓 𝑖 = 𝑏 × 𝑖 (mod 𝑛), 𝑖 ∈ 𝑍𝑛 – 0
Proposition. f is bijective.

Corollary. 𝑓 1 , 𝑓 2 , . . , 𝑓 𝑛 − 1 = 1, 2, . . , 𝑛 − 1 ,

where 𝑓 𝑖 is reduce to a residue mod n.

12

Illustration of Corollary 𝑛 = 7, 𝑏 = 22 × 1, 2 × 2, 2 × 3, 2 × 4, 2 × 5, 2 × 6 = {2, 4, 6, 1, 3, 5}𝑛 = 7, 𝑏 = 55 × 1, 5 × 2, 5 × 3, 5 × 4, 5 × 5, 5 × 6 = {5, 3, 1, 6, 4, 2}𝑛 = 7, 𝑏 = 66 × 1, 6 × 2, 6 × 3, 6 × 4, 6 × 5, 6 × 6 = {6, 5, 4, 3, 2, 1}
13

Proof of Fermat’s Little Theorem, cont’d
We first show that 𝑓 is injective (1-1).

Suppose 𝑓 𝑖 = 𝑓 𝑗
Then,𝑏 × 𝑖 ≡ 𝑏 × 𝑗 mod 𝑛⇒ 𝑏−1𝑏 × 𝑖 ≡ 𝑏−1𝑏 × 𝑗 mod 𝑛⇒ 𝑖 = 𝑗
This proves 𝑓 is injective. A mapping from a finite set to itself, which

is injective, must necessarily be surjective, i.e., onto, and therefore,

bijective. This can be proved by contradiction as follows.

Assume 𝑓 is an injective (1-1) mapping from 𝑍𝑛 to 𝑍𝑛, but not

surjective (onto). Then, the range 𝑅 is not equal to the whole set 𝑍𝑛, i.e., 𝑅 ⊂ 𝑍𝑛. But since 𝑓 is 1-1, 𝑍𝑛 = 𝑅. This, implies that 𝑍𝑛 ⊂ 𝑍𝑛, a contradiction. 14

Proof of Fermat’s Little Theorem cont’d
It follows from the Corollary that𝑏 × 1 × 𝑏 × 2 ×⋯× 𝑏 × 𝑛 − 1 ≡ 1 × 2 ×⋯× 𝑛 − 1 (mod 𝑛)
Therefore we have⇒ 𝑏𝑛−1× (1 × 2 ×⋯× 𝑛 − 1) ≡ 1 × 2 ×⋯× 𝑛 − 1 (mod 𝑛)⇒ 𝑏𝑛−1≡ 1 (mod 𝑛)
Q.E.D. ("quod erat demonstrandum", Latin for "that which was to be

demonstrated“)

15

Example n = 7, b = 2

(2×1) × (2×2) × (2×3) × (2×4) × (2×5) × (2×6) ≡ 2 × 4 × 6 × 1 × 3 × 5
(mod 7)⇒ 26 × (1 × 2 × 3 × 4 × 5 × 6) ≡ 1 × 2 × 3 × 4 × 5 × 6 (mod 7)⇒ 26 ≡ 1 (mod 7)

16

You know what's odd?

Any integer not wholly divisible by 2.

17

Integers – Bases

We discuss

• Expressing a number in binary and more

generally in base b.

• Designing a recursive algorithm to convert a

decimal number to binary and more generally

to base b.

• Relationship between a number and the

number of its digits.

1

Binary Representation

The binary representation is a number n is 𝒅𝒌−𝟏𝒅𝒌−𝟐⋯𝒅𝟏𝒅𝟎
where 𝑑𝑖 ∈ {0,1}, 𝑖 = 0,… , 𝑘, such that 𝒏 = 𝒅𝒌−𝟏 × 𝟐𝒌 −𝟏 𝒅𝒌−𝟐 × 𝟐𝒌 −𝟐 +⋯𝒅𝒌−𝟐 × 𝟐 + 𝒅𝟎
For example, convert 114 to binary

114 = 64 + 32 + 16 + 2

Binary representation is

1110010

2

PSN. Convert 250 to binary.

3

Base b

Give a positive integers b and n, n is represented in base

b as 𝑑𝑘−1𝑑𝑘−2⋯𝑑1𝑑0
where 0 ≤ 𝑑𝑖 ≤ 𝑏 − 1, 𝑖 = 0,… , 𝑘, 𝑑𝑘−1 ≠ 0 , such that 𝑛 = 𝑑𝑘−1 × 𝑏𝑘 −1 𝑑𝑘−2 × 𝑏𝑘 −2 +⋯𝑑1 × 𝑏 + 𝑑0
This representation is unique.

When b = 8 the representation is called octal and when

b = 16 the representation is called hexadecimal.

4

Proof by contradiction that

representation is unique

Suppose n could be represented in two ways, i.e., 𝑛 = 𝑑𝑘−1𝑑𝑘−2⋯𝑑1𝑑0 = 𝑒𝑗−1𝑒𝑗−2⋯𝑒1𝑒0
Then, (𝑑𝑘−1× 𝑏𝑘 −1 +⋯+ 𝑑1 × 𝑏 + 𝑑0) − (𝑑𝑗−1× 𝑏𝑗 −1 +⋯+ 𝑑1× 𝑏 + 𝑑0) = 0

Suppose the highest power of b that doesn’t get canceled out is m. Bring

the term with bm to one side (without loss of generality, we will assume the

left-hand-side) and all other terms to the other side. Then𝑐 × 𝑏𝑚= 𝑐0 + 𝑐1 × 𝑏 +⋯+ 𝑐𝑚−1 × 𝑏𝑚−1𝑐, 𝑐0, … , 𝑐𝑚−1, where 0 < 𝑐 < 𝑏 and −𝑏 < 𝑐𝑖 < 𝑏 for 𝑖 = 0, 1, … ,𝑚 − 1. It

follows that 𝑏𝑚 ≤ (𝑏 − 1) + (𝑏 − 1) × 𝑏 +⋯+ (𝑏 − 1) × 𝑏𝑚−1≤ 𝑏 − 1 1 + 𝑏 +⋯+ 𝑏𝑚−1 = 𝑏−1 𝑏𝑚−1𝑏−1 = 𝑏𝑚 − 1
We have 𝑏𝑚 ≤ 𝑏𝑚 − 1, a contradiction. 5

Converting to Binary Using Recursion

Give a recursive algorithm for changing from

decimal to binary, i.e., base 2.

6

Solution

Use the fact that the least significant digit of n in its binary

representation is

n mod 2

and the decimal number obtained by removing the least significant

binary digit in its binary representation is 𝑛2
which is obtain by n/2 using integer division. For example, consider

n = 225:

225 → 11100001
225 mod 2 = 1

225/2 = 112 → 1110000
7

Converting 114 to binary using recursion114 ↔ 1142 114 mod 2 = 57 057 0↔ 572 57 mod 2 0↔ 28 1 028 1 0 ↔ 282 28 mod 2 1 0↔ 14 0 1 014 0 1 0 ↔ 142 14 mod 2 0 1 0 ↔ 7 0 0 1 07 0 0 1 0↔ 72 7 mod 2 0 0 1 0 ↔ 3 1 0 0 1 03 1 0 0 1 0 ↔ 32 3 mod 2 ↔ 1 1 1 0 0 1 0
Binary representation is 1110010

8

PSN. Convert 250 to binary.

9

Recursive Function for Converting a

Decimal number to Binary

Give pseudocode for a recursive function

BinRep(n) for converting an number n to its

binary (base 2) representation stored in a string.

Assume + performs the operation of adding a

digit, i.e.,

“10001101” + 0 → “100011010”

10

Convert to Binary

function BinRep(n) recursive

Input: n (a positive integer)

Output: string for binary representation of n

if n == 0 return (empty string)

return(BinRep(n/2) + n mod 2)

end BinRep

11

Note that BinRep works for n strictly positive. If n is zero, it returns the empty string.

We need to code it this way, since otherwise a leading 0 will be added to all n greater

than 0.

Changing to a General Base

Design a recursive algorithm for

changing from decimal to any given

base b.

12

Solution

Use the fact that the least significant digit of n in

its binary representation is𝑛 mod 𝑏
and the decimal number obtained by removing

the least significant binary digit in its binary

representation is 𝑛𝑏
which is obtain by n/b using integer division.

13

Recursive Function for Converting a

number of Binary

Give pseudocode for a recursive function

BinRep(n) for converting an number n to its

base b representation stored in a string. Assume

+ performs the operation of adding a digit. For

example for b = 8

“20367471235” + 6 → “203677712356”

14

Convert to Base b

function BinRep(n,b) recursive

Input: n,b (positive integers)

Output: string for representation of n in base b

if n == 0 return (empty string)

return(BinRep(n/b) + n mod b)

end BinRep

15

Note that BinRep works for n strictly positive. If n is zero, it returns the empty string.

We need to code it this way, since otherwise a leading 0 will be added to all n greater

than 0.

Relationship between a number and

the number of its digits

In analyzing algorithms involving integers, the input
size of an integer n is the number of digits of n.

A 100-digit number is enormous
in the sense it is greater than the
number of atoms in the known
universe, which is estimated to be
about 1083, which as only 84 digits.

Yet a 100-digit number n has input size 100, which is
relatively small and can be stored in an array of size
100.

16

Problem Solving Notebook

Show that the number d of decimal digits

of n is approximately log10n.

What about number of binary digits? Octal

digits? hexadecimal digits?

17

There are 10 kinds of people in the
world.

Those who know binary and those

who don’t.

18

10 people

Greatest Common Divisor (gcd)

The greatest common divisor of two integers 𝑎
and 𝑏, denoted by gcd(𝑎, 𝑏) is the largest

integer that divides both.

1

Computing gcd using prime

factorization

The prime factorization of a number n is the unique product of

prime powers that equals n.

For example, 3000 = 23 × 3 × 537700 = 22 × 52 × 7 × 11
The gcd(a,b) is obtained the product of the of the smallest power

of each prime from the prime factorizations of a and b, where

the smallest power is 0 if the prime does not occur in the

factorization.gcd 3000,7700 = 22 × 52 = 100
2

• It turns out that prime factorization for large

integers, i.e., hundreds of digits, is a “hard” problem
and it is not known how to solve in real time.

• However, the greatest common divisor can be

computed efficiently using an algorithm that dates all

the way back to Euclid who lived c. 325 – c. 270 BC

in Alexandria, Egypt.

3

Recurrence Relation for gcd

The key idea is to use the recursion relationgcd 𝑎, 𝑏 = gcd(𝑏, 𝑟), where 𝑟 = 𝑎 mod 𝑏.

The initial condition is gcd 𝑎, 0 = 𝑎.
The concept of 0 had not be invented in Euclid’s
time, so the initial condition he used

was more cumbersome.

4

Example gcd 3000,77003000 = 0 × 7700 + 30007700 = 2 × 3000 + 17003000 = 1 × 1700 + 13001700 = 1 × 1300 + 4001300 = 3 × 400 + 100400 = 4 × 100 + 0gcd 3000,7700 = gcd 7700,3000 =gcd 3000,1700 = gcd 1700,1300 = gcd 1300,400 =gcd 400,100 = gcd 100,0 = 100
5

PSN. Using Euclid’s algorithm compute
gcd(585,1035)

6

Recursive version of Euclid GCD

function EuclidGCD(a,b)

Input: a, b (nonnegative integers)

Output: gcd(a,b)

if (b == 0)

return a

else

r = a mod b

return EuclidGCD(b,r)

endif

end EuclidGCD

7

Nonrecursive version

function EuclidGCD(a,b)

Input: a, b (nonnegative integers)

Output: gcd(a,b)

while b ≠ 0 do

Remainder = a mod b

a = b

b = Remainder

endwhile

return(a)

end EuclidGCD

8

Most iterations performed

Note that if a < b, then a and b get swapped after the first
iteration, so no need to make this test.

Proposition. Euclid’s algorithm in computing gcd(a,b)
where a ≥ b makes at most 2n iterations where n is the
number of binary (base 2) digits of a.

Proof. After one iteration a is replaced with b and b with r
and after another iteration b is replaced with r. Thus, after
two iterations a is replaced with r. But, the remainder r in
binary has at least one fewer digits than a. Thus, after
every other iteration a is reduced by at least one binary
digit. It follows that the number of iterations performed in
computing gcd(a,b) for any a and b where a ≥ b is at most
twice the number of binary digits of a.

9

For what input does Euclid’s algorithm
take the most time?

Answer: a = fib(n), b = fib(n+1), where fib(n) is the

nth Fibonacci number.

Fibonacci numbers: 0 1 1 2 3 5 8 13 21 35 56 …

gcd(35,56) = gcd(56,35) = gcd(35,21) = gcd(21,13) =

gcd(13,8) = gcd(8,5) = gcd(5,3) = gcd(3,2) = gcd(2,1)

= gcd(1,1) = gcd(1,0) = 1

10

Applications of gcd

• Lowest Common Multiple

• Fraction in Lowest Form

• Cryptographic algorithms such as RSA

11

Lowest Common Multiple (lcm)lcm 𝑎, 𝑏 is the smallest multiple of both 𝑎 and 𝑏.

Proposition. lcm 𝑎, 𝑏 = 𝑎𝑏gcd 𝑎,𝑏 .

Example. 𝑎 = 585, 𝑏 = 1035𝑎 × 𝑏 = 585 × 1035 = 605475gcd (585,1035) = 45lcm (585,1035) = 23 × 585 = 13 × 1035= 13455= 60547545 12

Fraction in Simplest Form𝑎𝑏 in simplest form is
𝑎/gcd(𝑎,𝑏)𝑏/gcd(𝑎,𝑏)

Example. 𝑎 = 585, 𝑏 = 1035𝑎𝑏 = 5851035𝑎/gcd(𝑎,𝑏)𝑏/gcd(𝑎,𝑏) = 585/gcd(585,1035)1035/gcd(585,1035)= 585/451035/45 = 1323
13

That’s
simplest

Extended Euclid’s algorithm
We now design an extension of Euclid’s GCD
algorithm that computes integers g, s, t, where

g = gcd(a,b) and

g = sa + tb.

This algorithm has important applications

including use in the design of the RSA public-key

cryptosystem which is used extensively for

encryption and digital signatures on the Internet.

14

Example of Extended Euclid’s algorithms for 𝑎 = 6700, 𝑏 = 30006700 = 2 × 3000 + 700 ⇒ 700 = 6700 − 2 × 30003000 = 4 × 700 + 200 ⇒ 200 = 3000 − 4 × 700700 = 3 × 200 + 100 ⇒ 100 = 700 − 3 × 200200 = 2 × 100 + 0
100 = 700 − 3 × 200. Substituting from above we have100 = 700 − 3 × 3000 − 4 × 700 . Simplifying we have100 = 13 × 700 − 3 × 3000. Substituting from above we have100 = 13 × 6700 − 2 × 3000 − 3 × 3000. Simplifying we have100 = 13 × 6700 − 29 × 3000

We have solved 𝑔 = gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏 for 𝑎 = 6700, 𝑏 = 3000 obtaining𝑔 = 100, 𝑠 = 13, 𝑡 = −29. 15

PSN. Solve 𝑔 = gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏
for 𝑎 = 1035, 𝑏 = 585

16

Extended Euclid GCD

Suppose we have g = s’b + t’r
By definition a = bq + r, where q is the quotient, so

that

r = a – bq

Substituting this value for r into g = s’b + t’r we

obtain

g = s’b + t’ (a – bq) = t’a + (s’ – t’q)b

Assigning s = t’ and t = s’ – t’q, we have the desired

result

g = sa + tb
17

Extended Euclid GCD Algorithm

function ExtEuclidGCD(a,b,g,s,t)

Input: a, b (nonnegative integers)

Output: return g = gcd(a,b) and integers s and t such that sa + tb = g

if (b == 0) //BOOTSTRAP CONDITION

g = a

s = 1

t = 0

else

r = a mod b

q = a/b

ExtEuclidGCD(b,r,g,s,t) //recursive call

stemp = s

s = t

t = stemp – t*q

end ExtEuclidGCD

18

Historically Bad Joke

Humphrey Bogart is sitting in his bar in
Casablanca, enjoying the sublime beauty
of geometry...

He raises his glass and says,

"Here's looking at Euclid."

19

