
Introduction to Set Theory

Textbook Reading: First three 

sections of Chapter 1 up to page 20.

1



Introduction to Set Theory

• A set is a structure representing an unordered 

collection (group, plurality) of zero or more 

distinct (different) objects.

• Set theory deals with operations between, 

relations among, and statements about sets.

2



Basic notations for sets

• For sets, we’ll use variables S, T, U, A, B, … 
• We can denote a set S in writing by listing all of its 

elements in curly braces: 

– {a, b, c} is the set of whatever 3 objects are denoted by 

a, b, c.

• Set builder notation: For any proposition P(x) over 

any universe of discourse, {x : P(x)} is the set of all 

x such that P(x). Also denoted {x | P(x)} 

e.g., {x : x is an integer where x>0 and x<5 }

3



Basic properties of sets

• Sets are inherently unordered:

– No matter what objects a, b, and c denote, 

{a, b, c} = {a, c, b} = {b, a, c} =

{b, c, a} = {c, a, b} = {c, b, a}.

• All elements are distinct (unequal);

multiple listings make no difference!

– {a, b, c} = {a, a, b, a, b, c, c, c, c}. 

– This set contains at most 3 elements!

4



Definition of Set Equality

• Two sets are declared to be equal if and only if

they contain exactly the same elements.

• In particular, it does not matter how the set is 

defined or denoted.

• For example: The set {1, 2, 3, 4} = 

{x | x is an integer where x > 0 and x < 5 } = 

{x | x is a positive integer whose square

is  > 0 and < 25}

5



Basic Set Relations: Member of

• xS (“x is in S”) is the proposition that object x is an 

lement or member of set S. 

• xS (“x is not in S”) is the proposition that object x
is not an lement of set S.

• For xample

– 3{1,2,3,4,5}, 

– ‘a’{x | x is a letter of the alphabet}

– 2{1,3,5,7,9,11,13}

– ‘a’{x | x is a capital letter of the alphabet}

6



Logical symbols∀ for all→ implies↔ if and only if (iff)∃ there exists∄ there does not exist∧ and∨ or

7



Set equality

Two sets are equal iff (if and only if) they have 

all the same members.”

Can define set equality in terms of  relation:

S,T: S = T  (x: xS  xT)      

8



The Empty Set

•  (“null”, “the empty set”) is the unique set 
that contains no elements whatsoever.

•  = {}

9



Subset and Superset Relations

• ST (“S is a subset of T”) means that every element of S
is also an element of T. 

• Equivalently,

ST x (xS → xT)    

•  S, S  S.

• S  T (“S is a superset of T”) means T  S.

• Note S = T  S  T  S  T.   

• iff x such that xS  xT

10

TS /



Proper (Strict) Subsets & Supersets

• ST (“S is a proper subset of T”) means that 
ST but S ≠ T .  Similar for ST.

11

S
T

Venn Diagram equivalent of ST

Example:
{1,2} 
{1,2,3}



Sets Are Objects, Too!

• The objects that are elements of a set may 

themselves be sets.

• For example, let S={x | x  {1,2,3}} then 

S={, {1}, {2}, {3},{1,2}, {1,3}, {2,3}, {1,2,3}}

• Note that 1  {1}  {{1}} !!!!

12



Cardinality

• |S| (read “the cardinality of S”) is a measure 
of how many different elements S has. e.g.,

||=0,    |{1,2,3}| = 3,   |{a,b}| = 2,

|{{1,2,3},{4,5}}| = 2

13



Universal Set

A set which has all the elements in the universe 

of discourse is called a universal set. We will 

usually denote this set by U.

14



Venn Diagrams

In a class of 50 college freshmen, 30 are studying
Python, 25 studying C++, and 10 are studying both. How
many freshmen are studying either computer language?

U A B

10 1520

5
| | | | | | | |A B A B A B = + − 

= 30 + 25 – 10 = 45



The Union Operator

• For sets A, B, their union AB is the set 

containing all elements that are either in A or

in B (or in both).

• Formally,  AB = {x | xA or xB}.

• Note that AB contains all the elements of A

and it contains all the elements of B:

16



Union Examples

• {a,b,c}{2,3} = {a,b,c,2,3}

• {2,3,5}{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7} 

17



The Intersection Operator

• For sets A, B, their intersection AB is the set 

containing all elements that are 

simultaneously in A and in B.

• AB={x | xA and xB}.

• Note that AB is a subset of A and it is a 

subset of B:

18



Intersection Examples

• {a,b,c}{2,3} = ___

• {2,4,6}{3,4,5} = ______

19


{4}



Disjointedness

• Two sets A, B are called

disjoint (i.e., unjoined)

iff their intersection is

empty.  (AB = )

• Example: the set of even

integers is disjoint with

the set of odd integers.

20

Help, I’ve
been

disjointed!



Set Difference

• For sets A, B, the difference of A and B, written 

A − B or alternatively A \ B is the set of all 

elements that are in A but not B.

• A − B = x  xA and xB

• Also called: 

The complement of B with respect to A.

21



Set Difference Examples

• {1,2,3,4,5,6} − {2,3,5,7,9,11} =

___________

• Z − N = {… , -1, 0, 1, 2, … } − {0, 1, … }
= {x | x is an integer but not a nat. #}

= {x | x is a negative integer}

= {… , -3, -2, -1}

22

{1,4,6}



Set Difference - Venn Diagram

• A – B is what’s left after B
“takes a bite out of A”

23

Set A Set B

Set
A−B

Chomp!



Set Complements

• The universe of discourse can itself be 

considered a set, call it U.

• The complement of A, written  ҧ𝐴 or 

alternatively Ac, is the complement of A with 

respect to U, i.e., it is U − A.

• E.g., If U = {0,1,2,3,4,5,6,7} 3,5 = {0,1,2,4,6,7}
24



More on Set Complements

• An equivalent definition, when U is clear:

25

}|{ AxxA =

A

U

A



The Symmetric Difference Operator

• For sets A, B, their symmetric difference AB

is the set containing all elements that are 

either in exactly one of the sets A and B

• AB = AB – AB 

26



Cartesian Product

• The Cartesian product of two sets A and B, 

denoted A × B, is the set of all ordered pairs (a, 

b) where a is in A and b is in B.  

• A×B = { (a,b) ∣ a ∈ A and b ∈ B }. 

• |A×B| = |A|×|B|

27



Table representing Cartesian product

A table can be created by taking the Cartesian 

product of a set of rows and a set of columns. If 

the Cartesian product rows × columns is taken, the 

cells of the table contain ordered pairs of the form 
(row value, column value).

28



PSN. Pause video and work on solving𝑈 = 0,1,2,3,4,5,6,7,8,9 , 𝐴 = 0,1,2 , 𝐵 = {0,2,4,6}
|A| =

AB =

AB =

A – B =

AB =

A×B =

|A×B| =ҧ𝐴



Generalized Union

• Binary union operator: AB

• n-ary union:

AA2…An

(grouping & order is irrelevant because  is 

commutative and associative )

• “Big U” notation:

• Or for infinite sets of sets:

30


n

i

iA
1=


XA

A




Generalized Intersection

• Binary intersection operator: AB

• n-ary intersection:

A1A2…An

(grouping & order is irrelevant because  is 

commutative and associative )

• “Big Arch” notation:

• Or for infinite sets of sets:
31


n

i

iA
1=


XA

A




Infinite Sets

• Conceptually, sets may be infinite (i.e., not 

finite, without end, unending).

• Symbols for some special infinite sets:

N = {0, 1, 2, …}    The natural numbers.
Z = {…, -2, -1, 0, 1, 2, …}  The integers.
R = The “real” numbers, such as 
374.1828471929498181917281943125…

• Is it possible to label real numbers R with 

natural numbers?
32



Problem Solving Notebook (PSN): 

Russell’s Paradox 

Let R be the set of all sets that do not contain 

themselves, i.e., are not members of 

themselves.

PSN. What is meant by a paradox?

And, why does this lead to 

a paradox.

33

Bertrand Russell



Example of Russell-Like Paradox

In a small town, where every man is clean-
shaven, there is a barber.

This barber shaves all men who do not 
shave themselves and only men who do not 
shave themselves.

Who, then, shaves the barber?

-Bertrand Russell

34



Russell’s Paradox a Milestone 
in Set Theory

Russell's paradox threatened the foundations of 

mathematics. This motivated a great deal of 

research around the turn of the 20th century to 

develop a consistent (contradiction free) set 

theory.

35



In the old days when UC was just a ranch, a 

cowboy rode in on Friday, stayed overnight at 

the Bearcats Hotel, and rode out the next day on 

Monday.  How is that possible?



Answer

His horse’s name was Monday!

Actually, his 

horse’s name 
was Friday!

That’s a 
paradox!



De Morgan’s Laws, Proving Set 
Identities, Infinite Cardinalities 

Textbook Reading. Continue 

reading Chapter 1, 

pages 20-25.

1



Set Identities

• Identity:          A=A AU=A

• Domination:   AU=U    A=
• Idempotent:      AA = A = AA

• Double complement: 

• Commutative:  AB=BA   

AB=BA 

AB=B  A

• Associative:    A(BC)=(AB)C

A(BC)=(AB)C

A (B C)=(A  B) C 2

AA =)(



DeMorgan’s Laws for Sets

3

BABA

BABA

=

=



Proving Set Identities

To prove statements about sets, of the form 

E1 = E2 (where E’s are set expressions), here 

are two useful techniques:

• Prove E1  E2 and E2  E1 (mutual subsets)

– Prove  𝑥 ∈ 𝐸1 → 𝑥 ∈ 𝐸2 and 𝑥 ∈ 𝐸2 → 𝑥 ∈ 𝐸1
• Use a membership table.

4



Method 1: Mutual subsets

Example: Show distributive law holds:

A  (B  C) = (A  B)  (A  C). 

Show that A  (B  C)  ( A  B)  (A  C)

– Assume xA(BC) & show x(AB)(AC).

– We know that xA, and either xB or xC.

• Case 1: xB.  Then xAB, so x(AB)(AC).

• Case 2: xC. Then xAC , so x(AB)(AC).

– Therefore, x(AB)(AC).

We have shown that A(BC)(AB)(AC).

5



Proof cont’d
Show that (AB)(AC)  A(BC)

– Assume x(AB)(AC) and show xA(BC).

– We know that x AB or x AC 

• Case 1: x AB.  Then xA(BC)

• Case 2: x AC.  Then xA(BC)

This shows that (AB)(AC)  A(BC). 

We have shown that A(BC)(AB)(AC) and 

(AB)(AC)  A(BC).  Therefore, we have proven 

that

(AB)(AC) = A(BC).
6



Method 2: Membership Tables

• Just like truth tables for propositional logic, 

which we’ll see later in this course.
• Columns for different set expressions.

• Rows for all combinations of memberships in 

constituent sets.

• Use “1” to indicate membership in the derived 
set, “0” for non-membership.

• Prove equivalence with identical columns.

7



Membership Table for Operations 

8

AA BB AA    BB AA    BB AA  −−  BB 

0 0 0 0 0 
0 1 1 0 0 
1 0 1 0 1 
1 1 1 1 0 

 

 



PSN. Give Membership Tables for 

operations of Symmetric Difference 

and Complement.

9



Membership Table Example

Prove (A  B) − B = A − B.

10

AA BB AABB ((AABB))−−BB AA−−BB 

0 0 0 0 0 
0 1 1 0 0 
1 0 1 1 1 
1 1 1 0 0 

 

 



Alternate proof of distributive law

A  (B  C) = (A  B)  (A  C)

using a membership table

11

A   B   C A  B A  C B  C A  (B  C) (A  B)  (A  C)

0   0   0

0   0   1

0   1   0

0   1   1

1   0   0

1   0   1

1   1   0

1   1   1

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

1

0

1

1

1

0

1

1

1

0

0

0

0

0

1

1

1

0

0

0

0

0

1

1

1 



12

PSN. Prove (AB) − C = (A − C)  (B − C) 

using a membership table.



The Power Set Operation

• The power set P(S) of a set S is the set of all subsets 

of S.  P(S) = {x | x  S}.

• E.g. P({a,b}) = {, {a}, {b}, {a,b}}.

• Sometimes P(S) is written 2S.

Note that for finite S,   |P(S)| = 2|S|.

• It is easily show that for finite sets |P(S)| > |S| 

(where N denote the natural numbers).

• For infinite sets S is also true that the cardinality of 

P(S) is strictly greater than the cardinality of S. This  

can be shown using a generalization of Cantor’s 
diagonal, but is beyond the scope of this course.

13



PSN. Pause video and work on solving𝑈 = 0,1,2,3,4,5,6,7,8,9 , 𝐴 = 0,1,2 , 𝐵 = {0,2,4,6}
P(B) =

|P(AB)| =

|P(A×B)| =

| P(A)×P(B)| =



Infinite cardinalities

• Cardinality of real numbers is strictly greater 

than natural numbers.  

• In particular, you can’t list the set of real 
numbers between 0 and 1,  or equivalently 

index them with the natural numbers.  

• Cantor showed that at least one real number 

will not be included in the list, so that the 

subset of real number between 0 and 1 is 

strictly greater than the natural numbers.

15



Cantor’s Diagonal
Imagine listing all real numbers between 0 and 

1 in any order.  You can always make an 

unlisted real number by changing every digit 

on the diagonal.

Georg Cantor 

16



Countable

• We say the cardinality of the natural numbers 

is countable.

• The cardinality of the real numbers is 

uncountable.

• A countable set is a set with the same 

cardinality as some subset of the set of natural 

numbers. A countable set is either a finite set 

or a countably infinite set.

17



Rational numbers are countable

Diagram below shows how to list all the rational numbers by 

following the arrows. Numbers in red indicated rational numbers 

that have already been counted and need not be added to the 

list.

18



Meaning of Discrete  

• Discrete mathematics deals with structures 

that are finite or infinite but countable.  

• A random variable is said to be discrete if the 

set of values it can take is either finite or 

infinite but countable. 

19



Continuum Hypothesis

• In mathematics, the continuum hypothesis 

(abbreviated CH) states:  

There is no set whose cardinality is strictly between 

that of the integers and the real numbers.

• Despite his efforts Cantor could not resolve CH. 

20



Continuum Hypothesis 
• The problem persisted and was considered so important by Hilbert that he 

placed it first on his famous list of open problems to be faced by the 20th 

century. Hilbert also struggled to resolve CH, again without success. 

David Hilbert

• Ultimately, this lack of progress was explained by the combined results of 

Gödel and Cohen, which together showed that CH cannot be resolved on 

the basis of the axioms that mathematicians were employing. 

Kurt Friedrich Gödel 21



Joke (bad)

Why did the engineering students not finish 
the lecture video?

They were getting a little ANSI.

22

This joke is not 

only bad, it’s 
nerdish bad!



Principle of Inclusion-Exclusion

Textbook Reading: 

Section 1.5, pp. 34-41
1



If sets A and B are disjoint, then 

|A  B| = |A| + |B|

A B

What if A and B are not disjoint?

Sum Rule



For two arbitrary sets A and B

|||||||| BABABA −+=

A B

Inclusion-Exclusion (2 sets)



Example Inclusion-Exclusion (2 sets)

How many numbers from 1 to 1000 are multiples of 3 or 5

Let S be the set of integers from 1 to 1000 that are multiples of 3 or multiples of 5.

Let A be the set of integers from 1 to 1000 that are multiples of 3.

Let B be the set of integers from 1 to 1000 that are multiples of 5.

A B
It is clear that S is the union of A and B,

but notice that A and B are not disjoint.

|A| = 1000/3 = 333 |B| = 1000/5 = 200 

A Å B is the set of integers that are multiples of 15, and so |A Å B| = 1000/15 = 66 

So, by the inclusion-exclusion principle, we have |S| = |A| + |B| – |A Å B| = 467.



PSN. Let p and q be any two prime numbers and let n = pq. 

Applying Principle of Inclusion-Exclusion and complement 

sets show that the number of positive numbers less than n

that are relatively prime to n (i.e., have no factor greater than 

1 in common with n is (p – 1)(q – 1). 

This has application to the important RSA cryptosystem, 

which we will discuss later in the course.

Sometimes it is useful to apply the Principle of Optimality to 

the complement of a set.  For example, suppose A is the 

set of numbers between 1 and n that are relatively prime to 

a n.  To compute |A| it is easier to first compute | ҧ𝐴| using the 

Principle of Optimality, then computing |A| by |A| = n – | ҧ𝐴|.   



|A [ B [ C| = |A| + |B| + |C|

– |A Å B| – |A Å C| – |B Å C|

+ |A Å B Å C|

A B

C

Inclusion-Exclusion (3 sets)



Proof Inclusion-Exclusion (3 sets)

A
B

C

1 2

2

1

1

2
3

|A| + |B| + |C| |A| + |B| + |C| – |A Å B| – |A Å C| – |B Å C|

A
B

C

1 1

1

1

1

1
0

A
B

C

1 1

1

1

1

1
1|A| + |B| + |C|

– |A Å B| – |A Å C| – |B Å C|

+ |A Å B Å C|

|A [ B [ C| 



Inclusion-Exclusion (3 sets)

From a total of 50 students: 30 know Java 

18 know C++

26 know C#

9 know both Java and C++

16 know both Java and C#

8 know both C++ and C#

47 know at least one language.

How many know none?

How many know all?

|A [ B [ C| = |A| + |B| + |C| – |A Å B| – |A Å C| – |B Å C| + |A Å B Å C|

|A|

|B|

|C|

|A Å B|

|A Å C|

|B Å C|

|A [ B [ C||A Å B Å C|

47 = 30 + 18 + 26 – 9 – 16 – 8 + |A Å B Å C|

|A Å B Å C| = 6

50 – |A [ B [ C| = 3



PSN. Using set complement and the Inclusion-

Exclusion with 3 sets, obtain a formula for the 

number of numbers between 1 and 500, inclusive, 

that are relatively prime to 60.



|A [ B [ C [ D| = |A| + |B| + |C| + |D|

– |A Å B| – |A Å C| – |A Å D| – |B Å C| – |B Å D| – |C Å D|

+ |A Å B Å C| + |A Å B Å D| + |A Å C Å D| + |B Å C Å D|

– |A Å B Å C Å D |

Inclusion-Exclusion (4 sets)

A B

C D



A B

C D

1 1

11

3

3

22

3

2

2

3

4

|A| + |B| + |C| + |D|

A B

C D

1 1

11

0

0

11

0

1

1

0

-2

|A| + |B| + |C| + |D| 
– |A Å B| – |A Å C| – |A Å D| – |B Å C| – |B Å D| – |C Å D|

A B

C D

1 1

11

1

1
11

1
1

1
1

2

|A| + |B| + |C| + |D| 
– |A Å B| – |A Å C| – |A Å D| – |B Å C| – |B Å D| – |C Å D|

+ |A Å B Å C| + |A Å B Å D| + |A Å C Å D| + |B Å C Å D|

A B

C D

1 1

11

1

1
11

1
1

1

1
1

|A| + |B| + |C| + |D|

– |A Å B| – |A Å C| – |A Å D| – |B Å C| – |B Å D| – |C Å D|

+ |A Å B Å C| + |A Å B Å D| + |A Å C Å D| + |B Å C Å D|

– |A Å B Å C Å D | = |A [ B [ C [ D| 



Inclusion-Exclusion (n sets)

What is the inclusion-exclusion formula for the union of n sets?



sum of sizes of all single sets
– sum of sizes of all 2-set intersections
+ sum of sizes of all 3-set intersections
– sum of sizes of all 4-set intersections
…
+ (–1)n+1 × sum of sizes of intersections of all n sets

1 2 nA A A   =

 

1

1,2, ,1

( 1)
n

k

i

S nk i S

S k

A
+

= 
=

= − 

Inclusion-Exclusion (n sets)



Inclusion-Exclusion (n sets)

sum of sizes of all single sets
– sum of sizes of all 2-set intersections
+ sum of sizes of all 3-set intersections
– sum of sizes of all 4-set intersections
…
+ (–1)n+1 × sum of sizes of intersections of all n sets

|A1 [A2 [A3 [ … [An|

We want to show that every element is counted exactly once.

Consider an element which belongs to exactly k sets, say A1, A2, A3, …, Ak.

In the formula, such an element is counted the following number of times:

Therefore each element is counted exactly once, and thus the formula is correct



Binomial Coefficient and Binomial Theorem  will be 
covered later in course in Chapter 7 (see page 459)

Plug in x = 1 and y = -1 in the above binomial theorem, we have 



Hope you had a good breakfast this morning. 
What type of bagel can fly?

16



Answer:

a plain bagel

17



Three Standard Proof 
Techniques

1. Disproof by Counterexample

2. Proof by Contradiction

3. Mathematical Induction



Disproof by Counterexample

A counterexample is an example that 
disproves a statement or proposition.  

Counterexamples are important because 
they enable mathematicians to show that 
certain conjectures or ideas, are false



Everyday Coin Changing

Make change of C cents using fewest coins by first choosing as 

many quarters as possible, then as many dimes, then as many 

nickels, and finally pennies.  This can be programmed as follows 

using integer division, which truncates to an integer.

Quarters = C / 25;

R = C – 25*Quarters;

Dimes = R / 10;

R = R – 10*Dimes;

Nickels = R / 5;

Pennies = R – 5*Nickels

3



Same Algorithm without Nickels

Quarters = C / 25;

R = C – 25*Quarters;

Dimes = R / 10;

Pennies = R – 10*Dimes;

PSN. Is this algorithm still correct, i.e., 

are fewest coins used?

(pause video to think about this)
4



What is Proof by Contradiction?

Proof by contradiction establishes the truth of a 

proposition, by showing that assuming the 

proposition to be false leads to a contradiction, 

i.e., a contradiction to the assumption or 

something known to be false. 

Proof by contradiction is also known as indirect 

proof, proof by assuming the opposite, and  

reduction to impossibility or absurdity.

5



Example

Prove using contradiction that the square 
root of 2 is irrational, i.e., cannot be written 
in the form a/b where a and b are positive 

integers.



Proof by contraction that square 

root of 2 is irrational:

Let's suppose 2 were not irrational, i.e., is 

a rational number. Then we can write it 2 = 
a/b where a,b are whole numbers, b not 
zero. We additionally assume that this a/b is 
simplified to the lowest terms, since that can 
obviously be done with any fraction. Notice 
that in order for a/b to be in its simplest 
terms, both a and b must be not be even. 

One or both must be odd. Otherwise, you 
could simplify.



Proof by contraction that square root of 2 
is irrational:

From the equality 2 = a/b it follows that 2 = 
a2/b2, or a2 = 2 * b2. So the square of a is an 
even number since it is two times 
something. From this we can know that a
itself is also an even number. Why? 
Because it can't be odd; if a itself was odd, 
then a * a would be odd too.  Thus, a = 2k 
where k is this other number.  



If we substitute a = 2k into the equation 2 = a2/b2,  

we get:

2 = (2k)2/b2

→ 2 = 4k2 / b2 → 2b2 = 4k2 → b2 = 2k2

This means b2 is even, from which follows again 

that b itself is an even number! This is  a 

contradiction, because we started the whole 

process saying that a/b is simplified to the lowest 

terms, and now it turns out that a and b would both 

be even. So 2 cannot be rational.

Proof by contraction that square root of 2 
is irrational:



Second Example: Coin 
Changing  

Consider again the problem of returning 
(correct) change using quarters, dimes, 
nickels, pennies.  Greedy Algorithm chooses 
the most quarters, then the most dimes for 
remaining change, etc.

Prove  that Greedy Algorithm returns fewest 
coins using proof by contradiction.



Proof by contradiction

Assume greedy method of making change does not involve the fewest 
coins.  Now consider an optimal solution that makes the same change C, 
but uses the fewest coins.

Let g25, g10, g5, g1 be the number of quarters, dimes, nickels, pennies in the 
greedy solution.

Let  p25, p10, p5, p1 be the number of quarters, dimes, nickels, pennies in 
the optimal solution.  

Since the greedy and optimal solution make the same change C we have

C = 25 × g25 + 10 × g10 + 5 × g5 + g1 =  25 × p25 + 10 × p10 + 5 × p5 + p1

Then, based on our assumption that the greedy does not involve the 
fewest coins, we have 

g25 + g10 + g5 + g1 >  p25 + p10 + p5 + p1



Trick 

The clever idea (trick) in getting a handle on 
the  proof is to make some observations 
about the optimal solution.  

PSN. Obtain upper bounds p10, p5, p1

(pause video to think about this)



We have shown that p10 ≤ 2, p5 ≤ 1,  p1 ≤ 4  
and if p5 = 1, then p10 ≤ 1. 

First consider the case where there are no 
nickels in the optimal solution, i.e., p5 = 0. Then 
the most change the optimal solution can make 
using only dimes, nickels and pennies, involves 
2 dimes and 4 pennies for a total of 24₵.

Now consider the case where there is one 
nickel, i.e., p5 = 1. Then the most change the 
optimal solution can make using only dimes, 
nickels and pennies, involves 1 dimes, 1 nickel 
and 4 pennies for a total of 19₵.



Number of quarters chosen by greedy and 
optimal solutions

Assume the optimal and greedy solution differ in the number of 
quarters chosen, i.e., g25 ≠  p25. By definition of the greedy method 
it chooses more quarters, i.e., g25 >  p25.

Since the greedy and optimal solution make the same amount of 
change C, i.e.,

C = 25 × g25 + 10 × g10 + 5 × g5 + g1 =  25 × p25 + 10 × p10 + 5 × p5 + p1

the optimal solution needs to make up the shortage of at least 25₵ 
using only dimes, nickels and quarters.  But, this is impossible 
since we showed on the previous slide that the optimal solution 
can make change of at most 24₵ using only dimes, nickels and 
pennies.  Since we have obtained a contradiction, we can conclude 
the that greedy and optimal choose the same number of quarters, 
i.e., g25 = p25.



We’ve shown that g25 = p25

Now consider the remaining change R after using the quarters are 
used, i.e., 

R = C – 25 × g25 = C – 25 × p25 .

Using a similar argument, we can show that the greedy and optimal 
solutions use the same number of dimes. Otherwise, optimal solution is 
short at least one dime and can make at most 9 cents using 1 nickel 
and 4 pennies.

Updating remaining change after dimes are used, we can show they 
involve the same number of nickels. Otherwise, optimal solution is short 
at least one nickel and can only make at most 4 cents using pennies.

All that is left is pennies and since the greedy and optimal solutions 
make the same total change and we have shown they use the same 
number of quarters, dimes and nickels, they are forced to use the same 
number of pennies.   

It follows that greedy and optimal involves exactly the same number of 

coins, which is a contradiction to assumption greedy does not involve 
the fewest coins. 



We have obtained a contradiction to the 
assumption that the greedy method does not 
use the fewest number of coins in making 

change.  Therefore, the opposite is true, i.e., 
the greedy method uses the fewest coins to 
make change.  This completes our proof by 

contradiction.



General Coin-Changing Problem is 

hard

Surprisingly, the problem with general 

denominations is hard. 

It has been shown to be NP-hard. We will discuss 

NP-complete and NP-hard later in this course.

There is no known polynomial time algorithm in the 

worst case for solving the coin-changing problem 

for general denominations. 17

We have shown that the greedy method works for 
US denominations.  



Joke that makes no sense

How do you know the mint making 

pennies was not shut down?

Answer: It makes no cents.



Three Standard Proof 
Techniques

1. Disproof by Counterexample

2. Proof by Contradiction

3. Mathematical Induction



Mathematical Induction

Mathematical induction is a powerful proof 
technique that is important in Computer 
Science. It is useful in proving the 

correctness of algorithms, as well as in the 
design and analysis of algorithms.   



Formal Formulation 
Suppose we have a sequence of propositions P(1), P(2), . . . , P(n), . . . for 

which the following two steps have been established:

Basis step: P(1) is true*  

Induction (or Implication) step: if P(k) is true for any given k,

Then P(k + 1) must also be true.

Then P(n) is true for all positive integers n. 

The validity of the Principle of Mathematical Induction can be seen as follows. 

Since P(1) is true, the induction step shows that P(2) is true. But the truth of 

P(2) in turn implies that P(3) is true, and so forth. The induction step allows 

this process to continue indefinitely. 

*For simplicity, here we are taking basis step with n = 1.  Later we will look at 

variations of mathematical induction, where we take basis step with n = b for 

some integer b.

3



Example 1
P(n): 12+ 22+ … + 𝑛2 = 𝑛(𝑛 + 1)(2𝑛 + 1)/6

4

Basis step: 

 

12 =1=1(1+1)
1(1+1)(2 +1)

6
(P(1) is true ). 

Induction step: Assume that P(k) is true for a given k, so that 12 + 22 + . . . 

+ k2 = k(k + 1)(2k + 1)/6. We must show that it would follow that P(k + 1) is 

true, namely, that 12 + 22 + . . . + (k + 1)2 = (k + 1)(k + 2)(2k + 3)/6. We have 

 

 

12 + 22 + + k 2 + (k +1)2 = (12 + 22 + + k 2) + (k +1)2

= k(k +1)
(2k +1)

6
+ (k +1)2(since P(k) is assumed true )

=
(k +1)[k(2k +1) + 6(k +1)]

6
=

(k +1)(2k 2 + 7k + 6)

6

=
(k +1)(k + 2)(2k + 3)

6
,

 

and therefore P(k + 1) is true. 



Example 2 (using less formal notation)

Show that 1 + 3 + 5 + … + 2n – 1 = n2.

Basis Step.  1 = 12

Induction Step. Assume true result is true for n = k, i.e., 

1 + 3 + 5 + … + 2k – 1 = k2.

Now consider the case n = k + 1.  

1 + 3 + 5 + … + 2k – 1 + 2k + 1 

= (1 + 3 + 5 + … + 2k – 1) + 2k + 1 

= k2 + 2k + 1                        (by Induction Hypothesis)

= (k + 1)2

This completes the induction step and the proof.

PSN. Show that 1 + 2 + … +  n = n(n + 1)/2.
5



Example 3 – Harmonic Series
The harmonic series is defined by H(n) = 1 + 1/2 + . . . + 1/n

Proposition.  H(n) ≤ 1 + ln n

Basis Step   ln 1 = 0 < 1 ≤ 0 + 1

Induction Step.  Assume proposition is true for n = k, i.e., H(k) ≤ 1 + ln k + 1

Now consider the case n = k + 1.  Clearly, H(k + 1) = H(k) + 1/(k + 1).  Therefore, 

by the Induction Hypothesis we have

H(k + 1) ≤ (1 + ln k) + 1/(k + 1) ≤ 1 + ln (k + 1). 

To verify the last inequality, use the result that  ln x ≤ x – 1, for all real numbers 

x, 0 < x ≤ 2, so that 
ln k – ln (k + 1) = ln(k/k+1) ≤ (k/k+1) – 1 = -1/(k + 1) .

This completes the induction step and proof of the Proposition.
6



Variations of induction

1. Often the sequence of propositions starts with an index different from 1, 
such as 0 or in general an integer b. Then the basis step starts with this 
initial value b. The induction step remains the same, and the two steps 
together establish the truth of the propositions P(n) for all n greater than 
or equal to this initial b.

2. Sometimes the propositions are only finite in number, P(1), . . . , P(l). 
Then the induction step is modified to require that k < 1. Of course, the 
conclusion then drawn is that P(1), . . . , P(l) are all true if the basis and 
induction steps are valid.

3. The Principle of Mathematical Induction can also be stated in the 
following so-called strong form, where the induction step is as follows:

Induction step (strong form): For any positive integer k, if P(j) is true for 
all positive integers j ≤ k, then P(k + 1) must also be true.

4. A combination of the above.

7



Fibonacci Numbers

The nth Fibonacci number Fib(n) is defined by the recurrence 

relations 

Fib(n) = Fib(n – 1) + Fib(n – 2),  n ≥ 2,  Fib(0) = 0, Fib(1) = 1.

This generates sequence: 0  1  1  2  3  5  8  13  21  34 …

8



Applications in nature 

Fibonacci or Golden Spiral 

9



Example of proof using Strong Form of Induction

Proposition. Fib(n) < 2n, for all n ≥ 0.

Basis Step.  Fib(0) = 0 < 20 and Fib(1) = 1 < 21. Thus, the Proposition is true 

for n = 0 and n = 1.

Induction Step (Strong).  Assume the Proposition is true for all integers from  

0 to k, i.e., 

Fib(n) < 2n, n = 0, 1, …, k. 

Now consider the case n = k + 1. Using recurrence relation for 
Fibonacci, we obtain

Fib(k + 1) = Fib(k) + Fib(k – 1) 

< 2k + 2k – 1 (applying Induction Hypothesis for n = k
and n = k – 1)

< 2k + 2k = 2k + 1

This completes the induction step and the proof. 
10



PSN. Prove Fib(n) > 1.5n, for all n ≥ 11.

Note that this is not true for any n < 11 (check it 
out), so we must start the basis step at n = 11. 

Combining with previous result we have lower and 
upper bounds for Fib(n): 

1.5n < Fib(n) < 2n, for all n ≥ 11.

11



Trees
A tree is an important structure in CS with myriad 

applications.  

• It models operations in networks such as 

broadcasting from a source and gathering at a 

sink.  

• It is an important data structure used in many 

applications and algorithms.  

• Mathematical properties of trees have important 

applications in the design and analysis of 

algorithms. 



Tree Definition

2

A tree consists of a set of nodes (also called vertices), 
where one node is identified as the root and each node 
different from the root has another node associated with it 
called its parent.   A nodes is joined to it parent using an 
edge.  The set of all nodes having the same parent p are 
called the children of p.   A node with no children is called a 
leaf.  

Sample tree



Number of edges vs. number of nodes 

in a tree

Theorem. The number m of edges of any tree T

is one less than the number n of nodes.

Proof by Induction.  We perform induction on 

the number of n of nodes.

Basis Step.  A tree with one node has no edges, 

i.e., we have m = 0 = n – 1 

3



Induction Step

Assume true for n = k, i.e.,  any tree having k
vertices has k – 1 edges.  

Now consider a tree T having n = k + 1 nodes. For 
convenience, let n(T) and m(T) denote the number 
of vertices and nodes of T. 

PSN. To apply the induction hypothesis, we need to 
perform an operation that reduces T to a tree T’ 
having k nodes.  How to do this? 

4



Applying Induction Hypothesis

Since T’ has k nodes, we can apply the induction 
hypothesis (inductive assumption)

m(T’) = n(T’) – 1   (by Induction Hypothesis)

Thus, we have 

m(T) = m(T’) + 1 

= (n(T’) – 1) + 1      (substituting)

= n(T’) = n(T) – 1.

This completes the induction step and the proof.

5



2-tree

A 2-tree is a tree where every node that is not a 

leaf has exactly two children.

6



An internal node is a node that is not a leaf node. 

Let I(T) and L(T) denote the number of internal and leaf nodes of 

a 2-tree T, respectively. For convenience, let I = I(T) and L = L(T).

Proposition. Let T be a 2-tree.  Then, L = I + 1. 

Clearly, the total number n of nodes satisfies n = I + L, so we 

have:

Corollary 1.  n = 2I + 1.

Corollary 2.  n = 2L – 1.



Parametrizing the induction.  We must decide, 

which parameter, we will perform induction on, 

i.e., the number I of internal nodes, the number 

L of leaf nodes or the total number n of nodes.  

We will choose L. 



Basis Step

The proposition is true for  L = 1. A single node 

2-tree has one leaf node, the root, and 0 

internal nodes, so we have 

L = 1 = I + 1. 



Induction Step

Assume proposition is true for L = k, i.e., all 2-
trees T with k leaf nodes have k – 1 internal 
nodes.  Now consider any 2-tree T having k + 1 
leaf nodes.  

PSN. To apply the induction hypothesis, we need 
to perform an operation that reduces T to a tree 
T’ with k leaf nodes.  

How to do this? 



PSN.  To verify that this construction is valid, we 

must prove that every 2-tree T contains a node, 

both of whose children are leaf nodes. Proof this 

result.

11



Since T’ has one fewer leaf nodes than T, i.e., T’ has k
nodes, we can apply the induction hypothesis, i.e.,

L(T’) = I(T’) + 1.

Thus, 

L(T) = L(T’) + 1 = (I(T’) + 1) + 1 = I(T) + 1

This completes the induction step and the proof of the 
Proposition.

12



Binary Trees 

A binary tree is a tree where every node has at 

most 2 children and we identify children as 

either a left child or right child.

13



Inorder Traversal
Follow path around the tree starting at the root node and 

going left first when there is choice.  A node with no left 

child is output when it is visited; otherwise the node is 

output the second time it is visited.  The inorder traversal of 

the sample tree below is: gdhbeiacjf



Binary Search Trees

15

A binary search tree is a binary tree with a key (value) associated 
with each node, so that for every node, all the keys in its left subtree 
are smaller and all the keys in its right subtree are larger.  



Proposition. An inorder traversal of a binary search tree outputs 
the node keys in sorted order.

Inorder traversal: 1 5 8 10 12 15 20 22 25 28 30 36 38 40 45 48 50

16



Basis Step

Clearly, result is true for a binary search tree 

having one node.

17



Induction Step Strong

Assume the result is true of all binary search 

trees have j vertices, where 1 ≤ j ≤ k, i.e., 

performing an inorder traversal of a binary 

search tree having j nodes, outputs the keys in 

sorted order.

Now consider a binary search tree having k + 1 

nodes.

18



Applying Induction Hypothesis
• Let L and R denote the left and right subtrees of T. 

• Since both L and R have at most k nodes, we can apply the 
induction hypothesis to them, i.e., performing an inorder traversal 
of L outputs the keys in sorted order. The same applies to R.

• Performing an inorder traversal of T involves 

– performing an inorder traversal of L, 

– visiting the root, 

– performing an inorder traversal of R.  

• Since all the keys in L are less than the root key and all the keys in R
are greater than the root key, it follows that an inorder traversal of 
T outputs the keys in sorted order.

This completes the induction step and the proof of the Proposition.

19



Illustration with Previous 

Sample Binary Search Tree

L root                  R

1  5  8  10  12 15 20  22    25          28  30  36  38  40  45  48  50             

Applying Induction        output                Applying Induction 

Hypothesis with L root key              Hypothesis with R

20



Foundations of Logic

Mathematical Logic is a tool for working with 
elaborate compound statements.  It includes:

• A formal language for expressing them.

• A concise notation for writing them.

• A methodology for objectively reasoning about 
their truth or falsity.

• It is the foundation for expressing formal proofs in 
all branches of mathematics.



Propositional Logic 

Propositional Logic is the logic of compound 
statements built from simpler statements 
using so-called Boolean connectives.

Some applications in computer science:

• Design of digital electronic circuits.

• Expressing conditions in programs.

• Queries to databases & search engines.

George Boole
(1815-1864)



Definition of a Proposition

Definition: A proposition (denoted p, q, r, …) is simply:
• a statement (i.e., a declarative sentence)

– with some definite meaning, (not vague or ambiguous)

• having a truth value that’s either true (T) or false (F) 

– it is never both, neither, or somewhere “in between!”
• However, you might not know the actual truth value, 

• and, the truth value might depend on the situation or context.

• In probability theory, we assign degrees of certainty (“between” T 
and F) to propositions. 
– But for now: think True/False only!

Propositional Logic



Examples of Propositions

• “It is raining.”  (In a given situation.)

• “Washington, D.C. is the capital of the U.S.”   
• “1 + 2 = 3”
But, the following are NOT propositions:

• “Who’s there?” (interrogative, question)

• “La la la la la.” (meaningless interjection)

• “Just do it!” (imperative, command)

• “Yeah, I sorta dunno, whatever...” (vague)

• “1 + 2” (expression with a non-true/false value)

Propositional Logic



An operator or connective combines one or 
more operand expressions into a larger 
expression.  (E.g., “+” in numeric exprs.)

• Unary operators take 1 operand (e.g., −3); 
binary operators take 2 operands (e.g., 3  4).

• Propositional or Boolean operators operate 
on propositions (or their truth values) instead 
of on numbers.

Operators / Connectives

Operators



Some Popular Boolean Operators

Formal Name Nickname Arity Symbol

Negation operator NOT Unary ¬

Conjunction operator AND Binary 
Disjunction operator OR Binary 
Exclusive-OR operator XOR Binary 
Implication operator IMPLIES Binary →
Biconditional operator IFF Binary ↔

Propositional Logic: Operators



The Negation Operator

The unary negation operator “¬” (NOT) 
transforms a prop. into its logical negation.

E.g. If p = “I have brown hair.”
then ¬p = “I do not have brown hair.”

The truth table for NOT: p p 
T F 
F T 

 

 

T :≡ True;  F :≡ False
“:≡” means “is defined as”

Operand
column

Result
column

Propositional Logic: Operators



The Conjunction Operator

The binary conjunction operator “” (AND) 
combines two propositions to form their 
logical conjunction.

E.g. If p=“I will have salad for lunch.” and 
q=“I will have steak for dinner.”, then 
pq=“I will have salad for lunch and

I will have steak for dinner.”

Remember: “” points up like an “A”, and it means “ND”

ND

Propositional Logic: Operators



• Note that a
conjunction
p1  p2  …  pn

of n propositions
will have 2n rows
in its truth table.

• Also: ¬ and  operations together are suffi-
cient to express any Boolean truth table!

Conjunction Truth Table

p q pq

F F F
F T F
T F F
T T T

Operand columns

Propositional Logic: Operators



The Disjunction Operator

The binary disjunction operator “” (OR) 
combines two propositions to form their 
logical disjunction.

p=“My car has a bad engine.”
q=“My car has a bad carburetor.”
pq=“Either my car has a bad engine, or

my car has a bad carburetor.” After the downward-
pointing “axe” of “”
splits the wood, you
can take 1 piece OR the 
other, or both.



Propositional Logic: Operators

Meaning is like “and/or” in English.



• Note that pq means
that p is true, or q is
true, or both are true!

• So, this operation is
also called inclusive or,

because it includes the
possibility that both p and q are true.

• “¬” and “” together are also universal.

Disjunction Truth Table

p q pq

F F F
F T T
T F T
T T T

Note
difference
from AND

Propositional Logic: Operators



Nested Propositional Expressions

• Use parentheses to group sub-expressions:
“I just saw my old friend, and either he’s 
grown or I’ve shrunk.” = f  (g  s)

– (f  g)  s would mean something different

– f  g  s would be ambiguous

• By convention, “¬” takes precedence over 
both “” and “”.
– ¬s  f means   (¬s)  f  ,   not   ¬ (s  f)

Propositional Logic: Operators



A Simple Exercise

Let p=“It rained last night”, 
q=“The sprinklers came on last night,” 
r=“The lawn was wet this morning.”

Translate each of the following into English:

¬p = 

r  ¬p = 

¬ r  p  q =

“It didn’t rain last night.”
“The lawn was wet this morning, and
it didn’t rain last night.”
“Either the lawn wasn’t wet this 
morning, or it rained last night, or 
the sprinklers came on last night.”

Propositional Logic: Operators



The Exclusive Or Operator

The binary exclusive-or operator “” (XOR) 
combines two propositions to form their 
logical “exclusive or”.

p = “I will earn an A in this course,”
q = “I will drop this course,”
p  q = “I will either earn an A in this course, 

or I will drop it (but not both!)”

Propositional Logic: Operators



• Note that pq means
that p is true, or q is
true, but not both!

• This operation is
called exclusive or,

because it excludes the
possibility that both p and q are true.

• “¬” and “” together are not universal.

Exclusive-Or Truth Table

p q pq

F F F
F T T
T F T
T T F Note

difference
from OR.

Propositional Logic: Operators



Note that English “or” can be ambiguous
regarding the “both” case!

“Pat is a singer or
Pat is a writer.” -

“Pat is a man or
Pat is a woman.” -

Need context to disambiguate the meaning!

For this class, assume “or” means inclusive.

Natural Language is Ambiguous

p q p "or" q
F F F
F T T
T F T
T T ?





Propositional Logic: Operators



The Implication Operator

The implication p → q states that p implies q.

I.e., If p is true, then q is true; but if p is not 
true, then q could be either true or false.

E.g., let p = “You study hard.”
q = “You will get a good grade.”

p → q = “If you study hard, then you will get 
a good grade.” (else, it could go either way)

Propositional Logic: Operators

antecedent consequent



Implication Truth Table

• p → q is false only when
p is true but q is not true.

• p → q   does not say
that p causes q!

• p → q   does not require
that p or q are ever true!

• E.g. “(1=0) → pigs can fly” is TRUE!

p q p→q 
F F T 
F T T 
T F F 
T T T 

 

 

The 
only
False
case!

Propositional Logic: Operators



Examples of Implications

• “If this lecture ever ends, then the sun will 
rise tomorrow.” True or False?

• “If Tuesday is a day of the week, then I am 
a penguin.” True or False?

• “If 1+1=6, then I am an ostrich.” 
True or False?

• “If the moon is made of green cheese, then I 
am richer than Bill Gates.” True or False?

Propositional Logic: Operators



English Phrases Meaning p → q

• “p implies q”
• “if p, then q”
• “if p, q”
• “when p, q”
• “whenever p, q”
• “q if p”
• “q when p”
• “q whenever p”

• “p only if q”
• “p is sufficient for q”
• “q is necessary for p”
• “q follows from p”
• “q is implied by p”
We will see some equivalent 

logic expressions later.

Propositional Logic: Operators



Converse, Inverse, Contrapositive

Some terminology, for an implication p → q:

• Its converse is: q → p.

• Its inverse is: ¬p → ¬q.

• Its contrapositive: ¬q → ¬ p.

• One of these three has the same meaning

(same truth table) as p → q.  Can you figure 
out which?

PSN. Which one? Prove it.

Propositional Logic: Operators



The biconditional operator

The biconditional p  q states that p is true if and only 

if (iff) q is true.

p = “Joe Doe wins the 2020 senate election.”

q = “Joe Doe will be senator for all of 2021.”

p  q = “If, and only if, Joe Doe wins the 2020 
election, Joe Doe will be senator for all of 2021.”

Propositional Logic: Operators



Biconditional Truth Table

• p  q means that p and q
have the same truth value.

• Note this truth table is the
exact opposite of ’s!
Thus, p  q means ¬(p  q)

• p  q does not imply
that p and q are true, or that either of them causes 
the other, or that they have a common cause.

p q p  q
F F T
F T F
T F F
T T T

Propositional Logic: Operators



Show that

a)  p  q is the same as  p → q and q → p

b) Show that p  q is the same as  ¬(p  q)



Boolean Operations Summary

We have seen 1 unary operator and 5 binary 
operators.  Their truth tables are below.

p q p pq pq pq p→q pq

F F T F F F T T
F T T F T T T F
T F F F T T F F
T T F T T F T T

Propositional Logic: Operators



TeЯЯible Joke

Professor - "In English, a double negative 
becomes a positive. But it is not true for every 
language. In Russian, a double negative still 
remains a negative. However, there is no 
language where a double positive can form a 
negative.“

Student - "yeah, right"



Logical Equivalence

Compound propositions (formulas) p and q 

are logically equivalent to each other, written 
pq, iff p and q contain the same truth values 
as each other in all rows of their truth tables.

Propositional Logic: Equivalences



Ex. Prove that pq (p  q).

p q ppqq pp qq pp    qq ((pp    qq))

F F
F T
T F
T T

Proving Equivalence
via Truth Tables

F
T

T
T

T

T

T

T
T

T

F
F

F

F

F
F

F
F

T
T

Propositional Logic: Equivalences



Equivalence Laws - Examples

• Identity:             pT  p      pF  p

• Domination:      pT  T      pF  F

• Idempotent:       pp  p       pp  p

• Double negation:       p  p

• Commutative:  pq  qp    pq  qp

• Associative:          (pq)r  p(qr)
(pq)r  p(qr)

Propositional Logic: Equivalences



More Equivalence Laws

• Distributive:    
p(qr)  (pq)(pr)   (distribute  over )
p(qr)  (pq)(pr)   (distribute  over )

• De Morgan’s:
(pq) p  q

(pq) p  q

• Trivial tautology/contradiction:
p  p  T p  p  F

Propositional Logic: Equivalences

Augustus
De Morgan
(1806-1871)



Defining Operators via Equivalences

Using equivalences, we can define operators 
in terms of other operators.

• Exclusive or:   pq  (pq)(pq)
pq  (pq)(qp)

• Implies:           p→q p  q

• Biconditional: pq  (p→q)  (q→p)
pq (pq)

Propositional Logic: Equivalences



An Example Problem

• Check using a symbolic derivation whether 
(p  q) → (p  r) p  q  r.

(p  q) → (p  r) [Expand definition of →]

(p  q)  (p  r) [Expand defn. of ]

(p  q)  ((p  r)  (p  r))

[DeMorgan’s Law]

 (p  q)  ((p  r)  (p  r))

cont.

Propositional Logic: Equivalences



Example Continued...

(p  q)  ((p  r)  (p  r)) [ commutes]

 (q  p)  ((p  r)  (p  r)) [ associative]

 q  (p  ((p  r)  (p  r))) [distrib.  over ]

 q  (((p  (p  r))  (p  (p  r)))

[assoc.]  q  (((p  p)  r)  (p  (p  r)))

[trivial taut.]   q  ((T  r)  (p  (p  r)))

[domination]  q  (T  (p  (p  r)))

[identity]        q  (p  (p  r))  cont.

Propositional Logic: Equivalences



End of Long Example

q  (p  (p  r))

[DeMorgan’s]  q  (p  (p  r))

[Assoc.]           q  ((p  p)  r)

[Idempotent]    q  (p  r)

[Assoc.]           (q  p)  r 

[Commut.]      p  q  r 

Q.E.D. (quod erat demonstrandum)

Propositional Logic: Equivalences

(Which was to be shown.)



PSN. Give alternate proof using truth 
tables that

(p  q) → (p  r) p  q  r.



Review: Propositional Logic

• Atomic propositions: p, q, r, …
• Boolean operators:    →
• Compound propositions: (p  q)  r

• Equivalences: pq (p → q)

• Proving equivalences using:

– Truth tables.

– Symbolic derivations. p  q  r … 

Propositional Logic



Tautologies and Contradictions

A tautology is a compound proposition that is 
true no matter what the truth values of its 
atomic propositions are!

Ex. p  p

A contradiction is a compound proposition 
that is false no matter what!  Ex. p  p  

Other compound props. are contingencies.

Propositional Logic: Equivalences



Interpretation

Definition.  An interpretation is an assignment 
I of a truth value, i.e, T or F, to every 
propositional letter r.  We denote the assignment 
of a truth value to r by I(r).



Tautologies and Contradictions

φ is a tautology iff I(φ) = T for every interpretation I.

φ is a contradiction iff I(φ) = F for every interpretation I.

φ is a tautology iff φ is a contradiction.

pq iff the compound proposition pq is a tautology.



Show the following compound formula is a contradiction:

(p  q  r)  (p  q  r)  (p   q  r)  ( p  q  r) 

(p   q  r)  ( p  q  r)  ( p   q  r)  ( p   q  r) 

Proof. (p  p)   (q  q)   (r  r) = F  F  F = F

Using the distributive law of  over  we have

F = (p  p)   (q  q)   (r  r)

= (p  q  r)  (p  q  r)  (p   q  r)  ( p  q  r) 

(p   q  r)  ( p  q  r)  ( p   q  r)  ( p   q  r) 



PSN. Show the following compound formula is a tautology:

= (p  q  r)  (p  q  r)  (p   q  r)  ( p  q  r) 

(p   q  r)  ( p  q  r)  ( p   q  r)  ( p   q  r) 



Satisfiability

A formula φ is satisfiable iff it is T for 
some interpretation I, i.e., I(φ) = T.  
Otherwise it is unsatisfiable.

Every tautology φ is satisfiable.  

φ is not satisfiable iff φ is a contradiction.



GENIE: "Because you freed me from the 
lamp, I grant unto you one wish."

ME: "Can I wish for anything?"
GENIE: "Yes, anything."
ME: "Literally anything?"
GENIE: "Literally anything."
ME: "And you'll do it?"
GENIE: "I'm a genie, it's what I do."
ME (after some thought): "I wish for this wish to not be granted."
GENIE: "But wait! I can only grant your wish by not granting it, but 
by not granting it I'm actually granting it, but that means I have to 
not grant it, so...LOGIC ERROR...DOES NOT COMPUTE..." (explodes)



Representations of Formulas

Chapter 2 of Textbook

• Normal Forms, Section 2.5 pp. 121-
127

➢ Disjunctive Normal Form (DNF)

➢ Conjunctive Normal Form (CNF)

• Expression Trees, page 94 of text

• Combinatorial Circuits, using gates to 
represent formulas, page 98



Normal Forms

Formula f

Disjunctive Normal Form (DNF), pp. 122-125

Formula f is expression as a disjunction of clauses, 
where each clause is a conjunction of positive and 
negative literals.

Conjunctive Normal Form (CNF), pp. 125-127

Formula f is expressed as a conjunction of clauses, 
where each clause is a disjunction of positive and 
negative literals.



Disjunctive Normal Form (DNF)

3

p   q   r f Clause

Conjunction

F   F F p  q  r

F   F T p  q  r

F   T   F p  q  r

F   T   T p  q  r

T   F   F p  q  r

T   F   T p  q  r

T   T F p  q  r

T   T T p  q  r

T

F

T

T

F

F

T

T

f  (pqr)  (pqr)  (pqr)  (pqr)  (pqr)



Conjunctive Normal Form (CNF)

4

p   q   r f f Clause

Conjunction 

F   F F p  q  r

F   F T p  q  r

F   T   F p  q  r

F   T   T p  q  r

T   F   F p  q  r

T   F   T p  q  r

T   T F p  q  r

T   T T p  q  r

T

F

T

T

F

F

T

T

First put negation of formula in DNF:

f  (p  q  r)  (p  q  r)  (p  q  r)  

F

T

F

F

T

T

F

F 



Conjunctive Normal Form (CNF) cont’d

5

f  (p  q  r)  (p  q  r)  (p  q  r)

f (f )

((p  q  r)  (p  q  r)  (p  q  r))

(apply De Morgan’s Law for )

(p  q  r)  (p  q  r)  (p  q  r))

(apply De Morgan’s Law for  to each clause)

 (p  q  r)  (p  q  r)  (p  q  r))

 (p  q  r)  (p  q  r)  (p  q  r)

Formula f is now expressed in CNF as a conjunction of 
clauses, where each clause is a disjunction of positive and 
negative literals.



Put following formula f in DNF:

(p  q)  (p  r)

6



Put same formula f in CNF:

(p  q)  (p  r)

7



CNF SAT and NP-complete

CNF SAT is the quintessential NP-complete 
problem.

P = NP?  Most important problem in computer 
science and mathematics.  

We will discuss in the next lecture.



Other representations of 
Formulas

• Expression Trees, page 94 of text

• Combinatorial Circuits, using gates to 
represent formulas, page 98



Expression Trees

PSN. Give the expression tree for the 
formula

(((p  q)  (r))  (q  r))



Gates to represent formulas

OR, AND and NOT Gates 



Combinatorial Circuit

A set of gates is called a combinatorial 
circuit or combinatorial network.

PSN. Obtain formula associated with the 
above combinatorial circuit.



Predicate Logic

• Predicate logic is an extension of 
propositional logic that permits concisely 
reasoning about whole classes of entities.

• Propositional logic (recall) treats simple 
propositions (sentences) as atomic entities.

• In contrast, predicate logic distinguishes the 
subject of a sentence from its predicate.

– Remember these English grammar terms?

Predicate Logic



• Predicate logic is the foundation of the
field of mathematical logic, which 
culminated in Gödel’s incompleteness 
theorem, which revealed the ultimate 
limits of mathematical thought:
– Given any finitely describable, consistent 

proof procedure, there will always remain some
true statements that will never be proven
by that procedure.

• i.e., we can’t discover all mathematical truths, 
unless we sometimes resort to making guesses.

Predicate Logic

Kurt Gödel
1906-1978



Subjects and Predicates

• In the sentence “The dog is sleeping”:

– The phrase “the dog” denotes the subject -
the object or entity that the sentence is about.

– The phrase “is sleeping” denotes the predicate-
a property that is true of the subject.

• In predicate logic, a predicate is modeled as 
a function P(·) from objects to propositions.

– P(x) = “x is sleeping” (where x is any object).

Predicate Logic



More About Predicates

• Convention:  Lowercase variables x, y, z... denote 
objects/entities; uppercase variables P, Q, R… 
denote propositional functions (predicates).

• Keep in mind that the result of applying a 
predicate P to an object x is the proposition P(x).  
But the predicate P itself (e.g. P = “is sleeping”) is 
not a proposition (not a complete sentence).

– E.g. if P(x) = “x is a prime number”,
P(3) is the proposition “3 is a prime number.”

Predicate Logic



Universes of Discourse (U.D.s)

• The power of distinguishing objects from 
predicates is that it lets you state things 
about many objects at once.

• E.g., let P(x)=“x+1>x”.  We can then say,
“For any number x, P(x) is true” instead of
(0+1>0)  (1+1>1)  (2+1>2)  ...

• The collection of values that a variable x
can take is called x’s universe of discourse.

Predicate Logic



Quantifier Expressions

• Quantifiers provide a notation that allows 
us to quantify (count) how many objects in 
the univ. of disc. satisfy a given predicate.

• “” is the FORLL or universal quantifier.
x P(x) means for all x in the u.d., P holds.

• “” is the XISTS or existential quantifier.
x P(x) means there exists an x in the u.d.
(that is, 1 or more) such that P(x) is true.

Predicate Logic



The Universal Quantifier 

• Example: 
Let the u.d. of x be parking spaces at UC.
Let P(x) be the predicate “x is full.”
Then the universal quantification of P(x), x P(x), 
is the proposition:

– “All parking spaces at UC are full.”
– i.e., “Every parking space at UC is full.”
– i.e., “For each parking space at UC, that space 

is full.”

Predicate Logic



The Existential Quantifier 

• Example: 
Let the u.d. of x be parking spaces at UC.
Let P(x) be the predicate “x is full.”
Then the existential quantification of P(x), 
x P(x), is the proposition:

– “Some parking space at UC is full.”
– “There is a parking space at UC that is full.”
– “At least one parking space at UC is full.”

Predicate Logic



Calculus Example

• One way of precisely defining the calculus 
concept of a limit, using quantifiers:

( )

( ) ( )






−→−



=
→




|)(|||

::0:0

)(lim

Lxfax

x

Lxf
ax

Predicate Logic



Good Ole Days

No one uses logic anymore.

I miss the Godel days.



NP-Completeness

Textbook reading:

Section 2.5.6, Page 129

1



Hamiltonian Cycle

Sir William Rowen Hamilton’s Icosian Game

2



Goal of Icosian Game

Vertices of the icosahedron represent cities.  The 
goal is to perform a tour of the 20 cities and return 
to the starting vertex, following an edge of the 
icosahedron to move between two cities.  

This is done by placing pegs on the board so that Peg 
i and Peg i + 1, i = 1, 2, …, 19, and Peg 20 and Peg 1 
are on adjacent positions, i.e., end vertices of an 
edge of the icosahedron.

Can you solve the problem?

3



Solution to Icosian Game

Solution involves finding a Hamiltonian cycle in 

the icosahedron:

4



Coloring Problem

Given k colors, color the vertices of a graph so 
that every edge is properly colored, i.e., both 
ends of the edge are colored differently. Below 
is a properly vertex 3-colored graph.

5



Clique Problem

Consider the Friendship Network on Facebook, i.e., the 

vertex set V are users of Facebook and the edges set E

consists of all pairs of people that are friends.  A clique

is a group of people, such that every pair are friends, 

i.e., form a clique. In graph theory, a k-clique is a subset 

of k vertices that that every pair is joined with an edge. 

Given a positive integer k, does there exists a k-clique, 

i.e., k people, such that every pair are friends. 

6



Sum of Subsets

Given the input integers A = {a0, a1, . . . , an-1}, 

and the target sum c, is there are subset of the 

integers whose sum equals c?

7



No Worst-Case Polynomial-Time 

Algorithms Known 

Mathematicians worked for years on trying to 

obtain efficient algorithms for solving these 

problems in general and many other natural 

problems without success. In fact, to this day, no 

known worst-case polynomial algorithms are 

known for solving any of them.  It turns out that 

they are all NP-hard.

8



Decision version of the problem

The decision version of a problem asks whether a 
solution to the problem exists, “yes” or “true” if its 
exists, “no” or “false”, otherwise.  For example, 

• Does graph G contain a Hamiltonian cycle?

• Can graph G be properly vertex 3-colored?

• Does graph G contain a k-clique? 

• Does there exists a subset of a set A whose 
elements sum to c? 

9



Class P

A decision problem is in P if it can be solved with 

a polynomial-time algorithm, i.e., an algorithm 

that for any input of size n can be solved in 

polynomial time, i.e., in time at most nk for 

some positive integer k.

These problems are sometimes called tractable.  

The class P is the set of all such problems.

10



Class NP

NP stands for nondeterministic polynomial.  It applies to decision problems.

Given a decision problem, we associate a certificate with the problem.  

Examples:

Hamiltonian Cycle Problem.  Certificate is sequence of n distinct vertices: 

“yes-certificate” if it is corresponds to a Hamiltonian cycle; otherwise “no-

certificate”.  

3-Coloring Problem. Certificate is 3-coloring of vertices: “yes-certificate” if it 
is a proper coloring; otherwise, it is a “no-certificate”.

Clique Problem. Certificate is subset of k vertices: “yes-certificate” if it is a k-

clique; otherwise it is a “no-certificate”.

Sum of Subsets Problem. Certificate is a subset S of A: “yes-certificate” if the 
elements of A sum to c; otherwise it is a “no-certificate”.

11



High-Level Pseudocode for NP

function NPAlgorithm(A,I)

Input: A (a decision problem), I (an instance of problem A)

Output: “yes” or “don’t know”
1.  In polynomial time, guess a candidate certificate C for the

problem A

2.   In polynomial time, use C to deterministically verify that I is
a yes instance.   

if a yes instance is verified in step 2 then

return (“yes”)
else

return(“don’t know”)
endif

end NPAlgorithm

12



NP algorithms

Hamiltonian Cycle Problem.  Certificate is sequence of n distinct vertices 𝑢1, 𝑢2 , … , 𝑢𝑛
in the graph G. It can be verified in time n whether this certificate is a “yes-certificate”, 
i.e., is a Hamiltonian cycle by simply checking that {ui,ui+1}, i = 1, 2, …, n – 1, and {un,u1}, 

are all edges of G.

Coloring Problem. It can be verified whether a 3-coloring is proper in time m, where m

is the number of edges of G, by scanning all the edges to see whether both end 

vertices of the edge are colored the same. 

Clique Problem. It can be verified whether a subset of k vertices forms a k-clique in 

time k(k – 1)/2 by checking whether every pair of vertices of the subset is adjacent in 

G. 

Sum of Subsets Problem. It can be verified whether the elements of a subset S of a set 

A of size n sum to c by performing |S| – 1 < n additions.

For each of these problems a candidate certificate that is guessed can be verified to be 

a yes-certificate or no-certificate in polynomial time, so they are all in NP.

13



Polynomial-Time Reducibility

Given two decision problems A and B, we say that A is 
(polynomially) reducible to B, denoted A  B, if there is 
a mapping f from the inputs to problem A to the inputs 
to problem B, such that

1. The function f can be computed in polynomial time 
(that is, there is a polynomial algorithm that for 
input I to problem A outputs the input f(I) to 
problem B), and

2. the answer to a given input I to problem A is yes if, 
and only if, the answer to the input f(I) to problem B 
is yes.

14



Properties of Reduction Relation 

• The relation  is transitive; that is, if 

A  B and B  C then A  C.                         

• If A  B and B has polynomial 

complexity, then so does A.                            

15



Crazy Definition?

A problem B is NP-complete, if it is in NP 
and any problem A in NP is reducible to B, 
i.e., A  B.

At first, this definition may seem crazy, 
because it suggests that you can use B to 
solve every other problem in NP?  It would 
mean that if B is in P, every NP problem is 
in P, i.e.,  P = NP.

16



NP-Complete Problems Exist!

Surprising it was shown by Stephen 

Cook and independently by Leonid 

Levin, that NP-complete problems 

exist!

17



Most Famous Theorem in all of 

Mathematics and Computer Science

Cook–Levin Theorem. CNF SAT is NP-complete.

Discovered independently by Stephen Cook and 
Lenoid Levin in 1971.

18



The Reduction CNF SAT  CNF 3-SAT. 

19

Consider any instance of CNF SAT

I = C1  C2  . . .  Cm. 

Ci is of the form 𝑦1 ∨ ⋯∨ 𝑦𝑗 where𝑦1, … , 𝑦𝑗 ∈ 𝑥1, … , 𝑥𝑛 ∪ { ҧ𝑥1, … , ҧ𝑥𝑛} and ҧ𝑥𝑖 = ¬𝑥𝑖
We need to construction a reduction f mapping an 

input I of CNF SAT to an input I’ of CNF 3-SAT, so that I is 

satisfiable iff I’ is satisfiable. 



PSN. 

a) for a clause C of size 1, i.e., C is x (where x is a 
positive or negative literal), find a conjunction of 
clauses of size 3 that is logically equivalent using new 
variables y and z.

b) for a clause C of size 2, i.e., C is 𝑥 ∨ 𝑦 (where x and 
y are  positive or negative literals), find a conjunction 
of clauses of size 3 that is logically equivalent using 
new variable z.

20



Reduction from CNF SAT to CNF 3-SAT

We construct instance I’ of CNF 3-SAT from instance I of SAT by 
replacing clauses of size 1 and 2 using the logically equivalent 
conjunction of clauses from PSN problem we just did. 
Otherwise, we replace Ci = 𝑦1 ∨ ⋯∨ 𝑦𝑗 with 

f = (𝑦1∨ 𝑦2 ∨ 𝑧1)( ҧ𝑧1∨ 𝑦3 ∨ 𝑧2)( ҧ𝑧2∨ 𝑦4 ∨ 𝑧3)( ҧ𝑧2∨ 𝑦5 ∨ 𝑧3)⋯( ҧ𝑧𝑗−2∨ 𝑦𝑗−1 ∨ 𝑦𝑗)
If I is satisfiable then at least one of 𝑦1, … , 𝑦𝑗 are true, and the zi’s
can be chosen so the formula f is true.  On the other hand if I is 
not satisfiable, then for any truth assignment some clause Ci is 
false, i.e., the literals 𝑦1, … , 𝑦𝑗 are all false.  In which case no 
matter what values are chosen for the variables zi, f has the value 
false, so that I’ is not satisfiable (convince yourself of this).

21



NP-complete

Hundreds of natural and important 

problems have been shown to be NP-

complete, including  Vertex Coloring 

and Sum of Subsets. In fact, the 

coloring problem is NP-complete even 

for 3 colors.  

22



NP-Hard.

A problem, not necessary a decision problem, is 
NP-hard, if it could be applied to solve an NP-
complete problem in polynomial time, i.e., it is 
at least as difficult as an NP-complete problem.  

There are thousands of important and practical 
problems that are  known to be NP-hard.  In 
fact, most algorithmic problems that are 
encountered in practice in science and 
engineering are NP-hard.

23



P = NP?

• This is one of the most celebrated and important 
problems in all of computer science and 
mathematics.  

• To show P = NP, all you would have to do is design a 
polynomial-time algorithm for one NP-complete 
problem.

• Some of the greatest minds in mathematics and 
computer science have tried to crack this problem 
for about 50 years now, without success.  

• The conjecture these days is that P ≠ NP.

24



Bagel Challenge

If you solve the problem of whether P = NP,  

you will get an A in the course.

and write you are check for 

25



Functions

Textbook Reading 

Chapter 4, pp. 219-235

Section 4.6, pp. 253-257 (Pigeonhole Principle)

1



Definition of a function

• A function is a binary relation between two 

sets A (domain) and B (co-domain), i.e., a 

subset of A×B, so that each element in A 

occurs in exactly one pair.

• A function takes an element from a set and 

maps it to a UNIQUE element in another set.

2



Examples of functions

3

1

2

3

4

5

“a”
“bb“

“cccc”
“dd”
“e”

A string length function

A

B

C

D

F

Alice

Bob

Chris

Dave

Emma

A class grade function

Domain Co-domain

A pre-image

of 1

The image

of A



Not a function

4

1

2

3

4

5

“a”
“bb“

“cccc”
“dd”
“e”



Range

5

1

2

3

4

5

a

e

i

o

u

Some function…

Range



Function arithmetic

• Let f1(x) = 2x

• Let f2(x) = x2

• f1+f2 = (f1+f2)(x) = f1(x)+f2(x) = 2x+x2

• f1*f2 = (f1*f2)(x) = f1(x)*f2(x) = 2x*x2 = 2x3

6



One-to-one functions

• A function is one-to-one if each element in the 

range has a unique pre-image

7

1

2

3

4

5

a

e

i

o

A one-to-one function

1

2

3

4

5

a

e

i

o

A function that is 

not one-to-one



More on one-to-one

• Injective is synonymous with one-to-one

– “A function is injective”
• A function is an injection if it is one-to-one

• Note that there can 

be un-used elements 

in the co-domain

8

1

2

3

4

5

a

e

i

o

A one-to-one function



Onto functions

• A function is onto if each element in the co-

domain is an image of some pre-image

9

1

2

3

4

5

a

e

i

o

A function that 

is not onto

1

2

3

4

a

e

i

o

u

An onto function



More on onto

• Surjective is synonymous with onto

–“A function is surjective”
• A function is a surjection if it is onto

• Note that there can 
be multiply used 
elements in the 
co-domain

10

1

2

3

4

a

e

i

o

u

An onto function



Onto vs. one-to-one

• Are the following functions onto, one-to-one, 

both, or neither?

11

1

2

3

4

a

b

c

1

2

3

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

1-to-1, not onto

Onto, not 1-to-1

Both 1-to-1 and onto Not a valid function

Neither 1-to-1 nor onto



Bijections

• Consider a function that is

both one-to-one and onto:

• Such a function is a bijection

12

1

2

3

4

a

b

c

d



Identity functions

• A function such that the image and the pre-

image are ALWAYS equal

• f(x) = 1*x

• f(x) = x + 0

• The domain and the co-domain must be the 

same set

13



Inverse functions

14

R Rf

4.3 8.6

Let f(x) = 2*x

f-1

f(4.3)

f-1(8.6)

Then f-1(x) = x/2



More on inverse functions

• Can we define the inverse of the following functions?

• An inverse function is ONLY defined on a bijection

15

1

2

3

4

a

b

c

1

2

3

a

b

c

d

What is f-1(2)?

Not onto!

What is f-1(2)?

Not 1-to-1!



Compositions of functions

• Let (f ∘ g)(x) = f(g(x))

• Let f(x) = 2x+3 Let g(x) = 3x+2

• g(1) = 5, f(5) = 13

• Thus, (f ∘ g)(1) = f(g(1)) = 13

16



Compositions of functions

17

g f

f ○ g

g(a) f(a)

(f ○ g)(a)

g(a)
f(g(a))a

A B C



Compositions of functions

18

g f

f ○ g

g(1) f(5)

(f ○ g)(1)

g(1)=5

f(g(1))=13
1

R R R

Let f(x) = 2x+3 Let g(x) = 3x+2

f(g(x)) = 2(3x+2)+3 = 6x+7



Compositions of functions

Does f(g(x)) = g(f(x))?

Let f(x) = 2x+3 Let g(x) = 3x+2

f(g(x)) = 2(3x+2)+3 = 6x+7

g(f(x)) = 3(2x+3)+2 = 6x+11

Function composition is not commutative!

19

Not equal!



PSN: Matrix Multiplication

Consider the functions (linear transformations)

𝐴 𝑥1, 𝑥2 = 𝑎00 𝑎01𝑎10 𝑎11 𝑥0𝑥1 = 𝑎00𝑥0 + 𝑎01𝑥1𝑎10𝑥0 + 𝑎11𝑥1
𝐵 𝑥1, 𝑥2 = 𝑏00 𝑏01𝑏10 𝑏11 𝑥0𝑥1 = 𝑏00𝑥0 + 𝑏01𝑥1𝑏10𝑥0 + 𝑏11𝑥1
Compute 𝐴 ∘ 𝐵.  Discuss.

20



Matrix Multiplication corresponds to 

composition of linear function

The matrix product of a p×q matrix A and a 
q×r matrix B corresponds to the 
composition of a linear transformation A 
from Rp to Rq and a linear transformation B 
from Rq to Rr where Rp, Rq, Rr denote the 
set of all vectors of dimensions p, q and r, 
respectively. 

21



Inverse of Composition

PSN. Let f be an invertible function 

from Y to Z and g be an invertible 

function from X to Y.

Show that the inverse of 𝑓 ∘ 𝑔 is:(𝑓 ∘ 𝑔)−1= 𝑔−1 ∘ 𝑓−1
22



Floor, Ceiling and Round Functions

• Floor: x means take the greatest integer less 

than or equal to the number

• Ceiling: x means take the lowest integer 

greater than or equal to the number

• round(x) = floor(x + 0.5)

23



The Pigeonhole Principle

or Dirichlet's drawer principle 

• Suppose a flock of pigeons fly into a set of 
pigeonholes to roost.

• If there are more pigeons than pigeonholes, then 
there must be at least 1 pigeonhole that has more 
than one pigeon in it.

• If k+1 or more objects are placed into k drawers, 
then there is at least one drawer containing two or 
more of the objects.

24



25

//upload.wikimedia.org/wikipedia/commons/5/5c/TooManyPigeons.jpg


Pigeonhole Principle Examples

• In a group of 367 people, there must be two 

people with the same birthday.

– There are 366 possible birthdays.

• In a group of 27 English words, at least two 

words must start with the same letter.

– There are 26 letters.

26



Generalized Pigeonhole Principle

If N pigeons fly into k pigeonholes, then there is 

at least one pigeonhole containing N/k
pigeons.

Why is this true?

27



Solution

Let P denote the maximum number of pigeons in 

a pigeonhole. 

The average number of pigeons in a pigeonhole is

N/k.   

P must be at least as great as the average, i.e.,

P ≥ N/k.

But P is an integer, therefore,

P ≥ N/k .
28



Joke only programmers will get

Why did the functions stop calling each 
other?

Ans: Because they had too many arguments.

29



Relations

Textbook Reading:

Chapter 3, pp. 157-174.



Binary Relations

• Binary relations represent relationships 
between the elements of two sets.

• A binary relation R on set A and B is 
defined by:  R  A  B

• If (a,b)  R, we write:

aRb (a is related to b by R)

• If (a,b)  R, we write:

(a is not related to b by R)𝑎𝑅𝑏



Binary Relations

• A binary relation is represented by a set of 
ordered pairs.

• If A = {a, b} and B = {1, 2, 3}, then a 
relation R1 from A to B might be, for 
example, R1 = {(a,2), (a,3), (b,2)}.

• The first element in each ordered pair 
comes from set A, and the second element 
in each ordered pair comes from set B.



Example

A = {0,1,2}

B = {a,b}

A  B = {(0,a), (0,b), (1,a), (1,b), (2,a), (2,b)}

Then R = {(0,a), (0,b), (1,a), (2,b)} is a relation
from A to B.

✓Can we write    0Ra ? yes

✓Can we write    2Rb ? yes

✓Can we write    1Rb ? no



Example

• A binary relation may be represented 
graphically or as a table:

0

1

2

a

b

R a b

0 X X

1 X

2 X

We can see that 0Ra but 1Rb./



Functions as Binary Relations

• A function is a binary relation that has the 

restriction that each element of A can be 

related to exactly one element of B.

1 a

b

1 a

b

Relation Function



Inverse Binary Relation

The inverse binary relation of R denote R-1 is{ 𝑥, 𝑦 : (𝑦, 𝑥) ∈ 𝑅}
PSN.  Find the inverse relation of 

{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), 
(3,3), (3,4), (4,4)}



Number of Binary Relations

How many binary relations are there for an m element set A
and n element set B?

A binary relation set A and B is a subset of A  B. 
Therefore the set of all relations is P(A  B), the power set 
of A  B. 𝑃 𝐴 × 𝐵 = 2|𝐴×𝐵|
Now 𝐴 × 𝐵 = 𝐴 × 𝐵 = 𝑚𝑛
Therefore, 𝑃 𝐴 × 𝐵 = 2|𝐴×𝐵| = 2𝑚𝑛.



Binary Relations on a Set

• Relations can also be from a set to itself.

• A relation on the set A is a relation from set 
A to set A, i.e., R  A  A

• Let  A = {1, 2, 3, 4}

•Which ordered pairs are in the relation 
R = {(a,b) | a divides b}?

• R = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), 
(3,3), (4,4)} 



Binary Relations on a Set, cont’d

• Which of these relations (on the set of integers) 
contain each of the pairs (1,1), (1,2), (2,1), (1,-1), 
and (2,2)?

R1 = {(a,b) | a  b}
R2 = {(a,b) | a > b}
R3 = {(a,b) | a = b, a = −b}
R4 = {(a,b) | a = b}
R5 = {(a,b) | a = b + 1}
R6 = {(a,b) | a + b  3}



Binary Relations on a Set, cont’d
R1 = {(a,b) | a  b}
R2 = {(a,b) | a > b}
R3 = {(a,b) | a = b, a = −b}
R4 = {(a,b) | a = b}
R5 = {(a,b) | a = b + 1}
R6 = {(a,b) | a + b  3}

• The pair (1,1) is in R1, R3, R4 and R6

• The pair (1,2) is in R1 and R6

• The pair (2,1) is in R2 , R5 and R6

• The pair (1,-1) is in R2 , R3 and R6

• The pair (2,2) is in R1 , R3 and R4



Graphs  

The edge set of a graph determines a 
symmetric binary relation on the set of 
vertices called an adjacency relation.



Relation on set V corresponds to the 
edge set of a digraph with vertex set V

Relation {(A,B),(B,C),(C,D),(E,D),(E,F)} on 
set {A,B,C,D,E,F}



Number of Relations on a Set

How many relations are there on a set with n elements?

A relation on a set A is a subset of A  A. Therefore the set 
of all relations is P(A  A), the power set of A  A.𝑃 𝐴 × 𝐴 = 2|𝐴×𝐴|
Now 𝐴 × 𝐴 = |𝐴| × 𝐴 = 𝑛 × 𝑛 = 𝑛2
Therefore, 𝑃 𝐴 × 𝐴 = 2|𝐴×𝐴| = 2𝑛2 .



Example

•How many relations are there on set  S = {a, b, c}?

•There are 3 elements in set S, so S  S has 32 = 9 
elements.

•Therefore, there are 29 = 512  different relations on the set 
S = {a, b, c}.



Reflexive

• Let R be a relation on set A.

• R is reflexive if:

(a, a)  R for every element a  A.



Reflexive cont’d

•Which of these is reflexive?
R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}
R2 = {(1,1), (1,2), (2,1)}
R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)}
R4 = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)}
R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}
R6 = {(3,4)}

• The relations R3 and R5 are reflexive because 
they contain all pairs of the form (a,a); the 
other don’t [they are all missing (3,3)].



Symmetric

• Let R be a relation on set A.

• R is symmetric if:

(b, a)  R whenever (a, b)  R,         
where a, b  A.

A relation is symmetric iff “a is related to b” 
implies that “b is related to a”.



Symmetric cont’d

•Which of these is symmetric?
R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}
R2 = {(1,1), (1,2), (2,1)}
R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)}
R4 = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)}
R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}
R6 = {(3,4)}

• The relations R2 and R3 are symmetric 
because in each case (b,a) belongs to the 
relation whenever (a,b) does.
• The other relations aren’t symmetric.



Antisymmetric

• Let R be a relation on set A.

• R is antisymmetric if whenever (a, b)  R and 

(b, a)  R, then a = b, where a, b  A.

• A relation is antisymmetric iff there are no pairs 

of distinct elements with a related to b and b

related to a.  That is, the only way to have a

related to b and b related to a is for a and b to be 

the same element.

• Symmetric and antisymmetric are NOT exactly 

opposites.



Asymmetric vs. Antisymmetric

• Let R be a relation on set A.

• R is asymmetric if (a, b)  R implies (b,a)  R

• The relation < on the set of real numbers is 
asymmetric.

• R is antisymmetric if (a, b)  R and (b,a)  R
implies a = b.

• The relation ≤ on the set of real numbers is 
antisymmetric.



Example

• Which of these is antisymmetric?

R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}
R2 = {(1,1), (1,2), (2,1)}
R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)}
R4 = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)}
R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}
R6 = {(3,4)}

• The relations R4, R5 and R6 are antisymmetric because there is 

no pair of elements a and b with a  b such that both (a,b) 
and (b,a) belong to the relation.

• The other relations aren’t antisymmetric.



Transitivity

Let R be a relation on set A.

R is transitive if whenever (a ,b)  R and 
(b, c)  R, then (a, c)  R, where a, b, c  A.



Example

• Which of these is transitive?

R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}
R2 = {(1,1), (1,2), (2,1)}
R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)}
R4 = { (2,1), (3,1), (3,2), (4,1), (4,2) , (4,3)}
R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}
R6 = {(3,4)}

• The relations R4, R5 and R6 are transitive because if (a,b) and 
(b,c) belong to the relation, then (a,c) does also.

• The other relations aren’t transitive.



Combining Relations

Relations from A to B are subsets of A  B.

For example, if A = {1, 2} and B = {a, b}, then 

A  B = {(1, a), (1, b), (2, a), (2, b)}

Two relations from A to B can be combined in 
any way that two sets can be combined.  
Specifically, we can find the union, 
intersection, exclusive-or, and difference of 
the two relations.



Combining Relations cont’d

Let A = {1, 2, 3} and B= {1, 2, 3, 4}, and suppose we 
have the relations: 

R1 = {(1,1), (2,2), (3,3)}  

R2 = {(1,1), (1,2), (1,3), (1,4)}.

Then we can find the union, intersection, and difference 
of the relations:

R1  R2 = {(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)} 

R1  R2 = {(1,1)}

R1 - R2 = {(2,2), (3,3)} 

R2 - R1 = {(1,2), (1,3), (1,4)}



Composition of Relations

• Composition of relations generalizes 
composition of functions.

• If R1 is a relation from A to B and R2 is a 
relation from B to C, then the composition of 
R1 with R2 (denoted R2R1) is the relation from 
A to C

• It is defined by: (a, b) is a member of R1 and 
(b, c) is a member of R2, then (a, c) is a 
member of R2  R1, where a  A, b  B, c  C.



Example

• Let  A={1,2,3}, B={w,x,y,z}, C={A,B,C,D}

R1={(1,z),(2,w)}, R2={(w,B),(w,D),(x,A)}

• Find R2  R1

• Match (a,b) ∈ R1 with (b,c) ∈ R2 to get (a,c) ∈ R2  R1

• R2’s b’s are w and x; R1’s b’s are z and w

• Only the w’s match; R1 has only 1 w pair, (2,w)

• So the (a, c) pairs will include 2 from R1 and B and D
from R2: (2, B), (2, D)



PSN

Given the following relations, find R  S:
R = {(1,0),(2,0), (3,1), (3,2), (4,1)}
S = {(1,1), (1,4), (2,3), (3,1), (3,4)}

Construct the ordered pairs in R  S as follows:

for each ordered pair (s1,s2) in S

for each ordered pair (r1,r2) in R

if s2 = r1 then

(s1,r2) belongs to R  S



Inverse of Composition of Relations𝑅  𝑆 −1 = 𝑆−1 𝑅−1
Example

R = {(1,0),(2,0), (3,1), (3,2), (4,1)}

S = {(1,1), (1,4), (2,3), (3,1), (3,4)}

R  S = {(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)}

𝑅−1 = {(0,1),(0,2), (1,3), (2,3), (1,4)}𝑆−1 = {(1,1), (4,1), (3,2), (1,3), (4,3)}

(R  S) -1 = {(0,1), (1,1), (1,2), (2,2), (0,3), (1,3)} = 𝑆−1 𝑅−1



The Powers of a Relation

• The powers of a relation R are recursively defined 
from the definition of a composite of two relations.

• Let R be a relation on the set A.  The powers Rn, 
for n = 1, 2, 3,  … are defined recursively by: 

R1 = R
Rn+1 = Rn  R :

So:
R2 = R  R
R3 = R2  R = (R  R)  R
etc.



PSN. Let R = {(1,1), (2,1), (3,2), (4,3)}

Find the powers Rn , where n = 1, 2, 3, 4, 5



Transitivity

It follows from the definition of transitivity 
that

A relation R on a set A is transitive iff

Rn  R for n = 1, 2, 3, 4, …
For example, we showed the following 
relationship was transitive

R = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3),
(2,4), (3,3), (3,4), (4,4)}

Check that R2 = R.



Transitive Closure

• Let R be a relation on a set A of size n.

• The transitive closure of R is obtained by repeatedly adding 

the pair (x,z) whenever there is a pair (x,y) and (y,z) until for 

every pair (x,y) and (y,z) the pair (x,z) is in the relation.

• For example, if A = {a,b,c} and R = {(a,b),(b,c),(c,d)}, then the 

transitive closure is {(a,b),(b,c),(c,d),(a,c),(b,d),(a,d)}.

• The transitive closure equals 𝑅1 ∪ 𝑅2 ∪⋯∪ 𝑅𝑛−1.

• If R is reflexive then 𝑅𝑖−1 ⊆ 𝑅𝑖 , 𝑖 = 2, 3, … , 𝑛 − 1. It follows 

that 𝑅𝑛−1 is the transitive closure.  



Why was the cell phone wearing glasses? 

Answer. It lost its contacts.



Equivalence Relations and Partial Orders

Textbook reading:

Chapter 3, Section 3.6, pp. 181-187

Section 3.8, pp. 191-195



Equivalence Relations

A relation on set A is called an equivalence 

relation if it is:

• reflexive

• symmetric, and

• transitive



Equivalence Relations

Two elements a and b that are related by 
an equivalence relation are said to be 
equivalent.



Example – Equivalence Relation

Let R be a relation on set A, where A = {1, 2, 3, 4, 5} and R = 

{(1,1), (2,2), (3,3), (4,4), (5,5), (1,3), (3,1)}

Is R an equivalence relation?  

• Reflexive – it contains{(1,1), (2,2), (3,3), (4,4), (5,5)

• Symmetric – it contains both (1,3) and (3,1) 

• Transitive – for each pair of pairs (x,y) and (y, z) in R, the 

pair (x,z) is also in R.

Yes, it is an equivalence relation.



Example – Congruence modulo m

Let R = {(a, b) | a  b (mod m)} be a relation on the set of 
integers and m be a positive integer > 1. 

Is R an equivalence relation?

• Reflexive – is it true that a  a (mod m)}?  yes

• Symmetric – is it true that if a  b (mod m) then 
b  a (mod m)? yes

• Transitive - is it true that if a  b (mod m) and b
 c (mod m) then a  c (mod m)? yes



Example – Strings 

R is the relation on the set of strings of 
English letters such that aRb iff l(a) = l(b), 
where l(x) is the length of the string x.

Is R an equivalence relation?



Example – Strings cont’d 

Since l(a) = l(a), then aRa for any string a.  So R is 
reflexive.

Suppose aRb, so that l(a) = l(b).  Then it is also true that 
l(b) = l(a), which means that bRa. Consequently, R is 
symmetric.

Suppose aRb and bRc.  Then l(a) = l(b) and l(b) = l(c).  
Therefore, l(a) = l(c) and so aRc.  Hence, R is transitive.

Therefore,  R is an equivalence relation.



Equivalence Classes

Let R be a equivalence relation on set A.

The set of all elements that are related to an 
element a of A is called the equivalence class
of a.

The equivalence class of a with respect to R is:
[a]R = {s | (s, a)  R}

•When only one relation is under 
consideration, we will just write [a].



Equivalence Classes cont’d

If R is a equivalence relation on a set A, the 
equivalence class of the element a is:

[a]R = {s | (s, a)  R}
If b  [a]R , then b is called a representative of 
this equivalence class.



Equivalence Classes – Example 1

Let R be the relation on the set of integers such 
that aRb iff a = b or a = -b.  We can show that 
this is an equivalence relation.

The equivalence class of element a is
[a] = {a, -a}

Examples:
[7] = {7, -7} 
[-5] = {5, -5}
[0] = {0}



Equivalence Classes – Example 2

Consider the equivalence relation R on set A. What are the 
equivalence classes?

A = {1, 2, 3, 4, 5}

R = {(1,1), (2,2), (3,3), (4,4), (5,5), (1,3), (3,1)}

Just look at the aRb relationships.  Which elements are related to 
which?

[1] = {1, 3} [2] = {2}

[3] = {3, 1} [4] = {4}

[5] = {5}   

[1] and [3] are the same equivalence classes.



Equivalence Classes – Example 3

Consider set

A = {“hello”, “world”, “CS”, “discrete”, “Hi”, “joe”, “text”, “math”, 
“sting”, “purple”, “doe”, “bye”}. 

Equivalence class on A for relation aRb whenever a and b have 
the same size:

[“hello”] = {“hello”, “world”, “sting”}

[“math”] = {“text”, “math”}

[“CS”] = {“CS”, “Hi”}

[“discrete”] = {“discrete”}

[“joe”] = {“joe”, “doe”, “bye”}

[“purple”] = {“purple”}



Partitions

A partition of a set A divides A into non-
overlapping subsets:

➢A partition of a set A is a collection of 
disjoint nonempty subsets of A that have A as 
their union.

Set A

A
1 A

6

A
5

A
4

A
3

A
2



Partitions – Example 1 

S = {a, b, c, d, e, f }

S1 = {a, d, e}

S2 = {b}

S3 = {c, f }

P = {S1, S2, S3}

P is a partition of set S



Partitions – Example 2

If S = {1, 2, 3, 4, 5, 6}, then 

A1 = {1, 3, 4}

A2 = {2, 5}

A3 = {6}

form a partition of S, because:
• these sets are disjoint
• the union of these sets is S.



Violating Partition Property – Not Disjoint

S = {1, 2, 3, 4, 5, 6} 

A1 = {1, 3, 4, 5}

A2 = {2, 5}

A3 = {6}

Does not form a partition of S, because these 
sets are not disjoint (5 occurs in two different 
sets)



Violating Partition Property – Union is not S

S = {1, 2, 3, 4, 5, 6}

A1 = {1, 3}

A2 = {2, 5}

A3 = {6}

Do not form a partition of S, because the 
union of these sets is not S (since 4 is not a 
member of any of the subsets, but is a 
member of S).



Violating Partition Property – element not in S

If S = {1, 2, 3, 4, 5, 6}, then 

A1 = {1, 3, 4}

A2 = {2, 5}

A3 = {6, 7}

Do not form a partition of S, because 7 is a 
member of set A3 but is not a member of S.



Partitions and Equivalence Relations

• Let R be an equivalence relation on set S

• Then the equivalence classes of R form a 
partition of S.

• Conversely, let P = {Ai | i  I } be a partition 
of set S.

• Then there is an equivalence relation R that has 
the sets Ai (i  I) as its equivalence classes.  

PSN. Define the equivalence relation R
corresponding to P and prove its an 
equivalence relation.



Constructing an Equivalence Relation from a 
Partition

Given set  S = {1, 2, 3, 4, 5, 6} and a 
partition of S

A1 = {1, 2, 3}

A2 = {4, 5}

A3 = {6}

find the ordered pairs that make up the 
equivalence relation R produced by that 
partition.



Constructing an Equivalence Relation from a 
Partition

Let’s find the ordered pairs that are in R: 
A1 = {1, 2, 3} → (1,1), (1,2), (1,3), (2,1), (2,2),

(2,3), (3,1), (3,2), (3,3)

A2 = {4, 5} → (4,4), (4,5), (5,4), (5,5)

A3 = {6} → (6,6) 

So R is just the set consisting of all these 
ordered pairs:

R = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2),
(3,3), (4,4), (4,5), (5,4), (5,5), (6,6)} 



Partial Order

A relation R on a set S is called a partial 
ordering or partial order if it is:

• reflexive

• antisymmetric

• transitive



Partially Ordered Set or Poset

A set S together with a partial ordering R is 
called a partially ordered set, or poset, and 
is denoted by (S, R).



Example – Poset

Let R be a relation on set A. Is R a partial 
order?

A = {1, 2, 3, 4}

R = {(1,1), (1,2), (1,3), (1,4), (2,2),

(2,3), (2,4), (3,3), (3,4), (4,4)}



Example – Poset cont’d
R = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), 

(3,3), (3,4), (4,4)}

To be a partial order, R must be reflexive, antisymmetric, and 
transitive.

R is reflexive because R includes (1,1), (2,2), (3,3), (4,4).

R is antisymmetric because for every pair (a,b) in R, (b,a) is 
not in R (unless a = b).

R is transitive because for every pair (a,b) in R, if (b,c) is in 
R then (a,c) is also in R.



Example – Poset cont’d

So, given

A = {1, 2, 3, 4}

R = {(1,1), (1,2), (1,3), (1,4), (2,2),
(2,3), (2,4), (3,3), (3,4), (4,4)}

R is a partial order, and (A, R) is a poset.



Second Example Poset

Is the “” relation a partial ordering on the set of integers?

• Since a  a for every integer a,  is reflexive

• If a  b and b  a, then a = b. Hence  is anti-
symmetric.

• Since a  b and b  c implies a  c, is transitive.

• Therefore “” is a partial ordering on the set of 
integers and (Z, ) is a poset.



⊆ determine a partial order on sets

Consider the power P(A) of A, i.e., P(A) is 

the collection of all subsets of A.  Then, 

the ⊆ relation determines a partial 

ordering on P(A) and (P(A), ⊆) is a poset.

It is an easy exercise to verify that ⊆ is

reflexive, antisymmetric and transitive.



Comparable / Incomparable
In a poset the notation a ≼ b denotes (a, b) ∈ R

The “less than or equal to” () is an example of partial ordering 

The elements a and b of a poset (S, ≼) are called comparable

if either a≼b or b≼a.

The elements a and b of a poset (S, ≼) are called incomparable

if neither a≼b nor b≼a.

In the poset (Z+, |) where | means divides: 

• Are 3 and 9 comparable?    Yes; 3 divides 9

• Are 5 and 7 comparable?    No; neither divides the other

In the poset (P({1,2,3,4,5}), ⊆) 

• Are {2,5} and {1,2,4,5} comparable? Yes; {2,5} ⊆ {1,2,4,5} 

• Are {2,3,5} and {1,2,4,5} comparable?    No; neither is a subset of the other



Linear Order or Total Order

We said: “Partial ordering”  because pairs of 
elements may be incomparable.

If every two elements of a poset (S, ≼) are 
comparable, then S is called a totally ordered
or linearly ordered set and ≼ is called a total 
order or linear order.

A totally ordered set is also called a chain.



Total Order

The poset (Z, ) is totally ordered.  Why?

Every two elements of Z are comparable; that 
is, a  b or b  a for all integers.

The poset (Z+, |) is not totally ordered 
where | means divides.  Why?

It contains elements that are incomparable; for 
example 5 | 7./



What's a balloon's least favorite type of music? 

Pop



Modular Arithmetic

Given integers n and k, upon dividing n by k, we 
obtain a quotient q and remainder r given by 

n = kq + r

We define n modulo k or simply n mod k to be 
the remainder r.

For example,   

208 mod 10  = 8 since 208 = 20×10 + 8
45 mod 6 = 3 since 45 = 6×7 + 3
108 mod 13 = 4 since 108 = 13×8 + 4

1



Modular Arithmetic

If both x and y have the same remainder upon dividing by n, we 

write

x ≡ y (mod n)

Proposition. x ≡ y (mod n) iff x – y is divisible by n.

For example,    

208 ≡ 188 (mod 10).  208 – 108 = 10×10 is divisible by 10  

40 ≡ 14 (mod 13).  40 – 14 = 26 = 2×13 is divisible by 13

206 ≡ 342 (mod 17).  206 – 342 = -136 = -8×17 is divisible by 17.

2



Two important properties

(x + y) mod k = ((x mod k) + (y mod k)) mod k

(x × y) mod k = ((x mod k) × (y mod k)) mod k

It follows that we can compute an expression mod k
where the expression is obtained by performing a 
sequence of additions and multiplications by reducing the 
result mod k after each operation is performed.  Thus, an 
expression involving a large integer mod k can be 
computed by reducing the result of each computation 
mod k.  This is important in cryptographic applications, 
which often involve integers having hundreds, even 
thousands, of digits.  

3



Equivalence Relation

PSN. Show that the relation R given by xRy

whenever x ≡ y (mod n), i.e., whenever n divides 

x – y, is an equivalence relation on the set of Z of 

integers.  

4



Equivalence Classes

with equivalence  classes:  

[x] = {…, x – 2n, x – n, x, x + n, x + 2n, …} 

of all integers y such that x ≡ y (mod n).    

5



Residues mod n

Zn = {0, …, n – 1} of  integers (or residues) mod n are 

defined the same as over the integers, but the result x

of each operation is reduced by replacing x with the 

remainder r when x is divided by n.  

Element 𝑥 ∈ {0,1,2, … , 𝑛 − 1} corresponds to the 

equivalence class

[x] = {…, x – 2n, x – n, x, x + n, x + 2n, …} 

That is, we identify the integers 0, 1, 2, …, n – 1 with 

their equivalence classes [0], [1], [2], …, [n – 1].
6



Example: integers mod 4  

Z4 = {0, 1, 2, 3}

Elements correspond to classes:

[0] = {…, -8, -4, 0, 4, 8, …} 
[1] = {…, -7, -3, 1, 5, 9, …} 
[2] = {…, -6, -2, 2, 6, 10, …} 
[3] = {…, -5, -1, 3, 7, 11, …} 

Addition and Multiplication Tables:

7

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

× 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1



PSN. Obtain addition and

multiplication table for n = 7.

8



Zn forms a commutative ring
It is easily verified that Zn satisfies the following commutative 

ring properties:

Addition is commutative, associative and every element has an 

inverse, so that Zn is a commutative (Abelian) group under 

addition: 

x + y ≡ y + x                                  (mod n)

(x + y) + z ≡ x + (y + z)                 (mod n)

x + (– x) ≡ 0                                 (mod n)

Multiplication is commutative and associative:

x * y ≡ y * x                                  (mod n)

(x * y) * z ≡ x * (y * z)                 (mod n) 

Multiplication distributes over addition:

x*(y + z) ≡ x*y + x*z (mod n) 9



Zn forms a field for n prime

In the case when n is prime, Zn is also a 

commutative group under multiplication, so that 

it determines a field known as the Galois field of 

integers modulo n, denoted by GF(n).

10Évariste Galois



Fermat’s Little Theorem

Theorem (Fermat). Let b and n be positive integers, 
where n is prime and b is not divisible by n. Then,

𝑏𝑛−1 ≡ 1 (mod 𝑛).



Proof of Fermat’s Little Theorem𝑍𝑛 – 0 = 1, 2, . . , 𝑛 − 1
Let 𝑓: 𝑍𝑛 – 0 → 𝑍𝑛 – 0 be defined by𝑓 𝑖 = 𝑏 × 𝑖 (mod 𝑛), 𝑖 ∈ 𝑍𝑛 – 0
Proposition. f is bijective.

Corollary. 𝑓 1 , 𝑓 2 , . . , 𝑓 𝑛 − 1 = 1, 2, . . , 𝑛 − 1 ,

where 𝑓 𝑖 is reduce to a residue mod n.

12



Illustration of Corollary 𝑛 = 7, 𝑏 = 22 × 1, 2 × 2, 2 × 3, 2 × 4, 2 × 5, 2 × 6 = {2, 4, 6, 1, 3, 5}𝑛 = 7, 𝑏 = 55 × 1, 5 × 2, 5 × 3, 5 × 4, 5 × 5, 5 × 6 = {5, 3, 1, 6, 4, 2}𝑛 = 7, 𝑏 = 66 × 1, 6 × 2, 6 × 3, 6 × 4, 6 × 5, 6 × 6 = {6, 5, 4, 3, 2, 1}
13



Proof of Fermat’s Little Theorem, cont’d
We first show that 𝑓 is injective (1-1).

Suppose 𝑓 𝑖 = 𝑓 𝑗
Then,𝑏 × 𝑖 ≡ 𝑏 × 𝑗 mod 𝑛⇒ 𝑏−1𝑏 × 𝑖 ≡ 𝑏−1𝑏 × 𝑗 mod 𝑛⇒ 𝑖 = 𝑗
This proves 𝑓 is injective. A mapping from a finite set to itself, which 

is injective, must necessarily be surjective, i.e., onto, and therefore, 

bijective.  This can be proved by contradiction as follows. 

Assume 𝑓 is an injective (1-1) mapping from 𝑍𝑛 to 𝑍𝑛, but not 

surjective (onto).  Then,  the range 𝑅 is not equal to the whole set 𝑍𝑛, i.e., 𝑅 ⊂ 𝑍𝑛. But since 𝑓 is 1-1, 𝑍𝑛 = 𝑅. This, implies that 𝑍𝑛 ⊂ 𝑍𝑛, a contradiction. 14



Proof of Fermat’s Little Theorem cont’d
It follows from the Corollary that𝑏 × 1 × 𝑏 × 2 ×⋯× 𝑏 × 𝑛 − 1 ≡ 1 × 2 ×⋯× 𝑛 − 1 (mod 𝑛)
Therefore we have⇒ 𝑏𝑛−1× (1 × 2 ×⋯× 𝑛 − 1) ≡ 1 × 2 ×⋯× 𝑛 − 1 (mod 𝑛)⇒ 𝑏𝑛−1≡ 1 (mod 𝑛)
Q.E.D.  ("quod erat demonstrandum", Latin for "that which was to be 

demonstrated“)

15



Example n = 7, b = 2

(2×1) × (2×2) × (2×3) × (2×4) × (2×5) × (2×6) ≡ 2 × 4 × 6 × 1 × 3 × 5
(mod 7)⇒ 26 × (1 × 2 × 3 × 4 × 5 × 6) ≡ 1 × 2 × 3 × 4 × 5 × 6 (mod 7)⇒ 26 ≡ 1 (mod 7)

16



You know what's odd?

Any integer not wholly divisible by 2.

17



Integers – Bases

We discuss

• Expressing a number in binary and more 

generally in base b.

• Designing a recursive algorithm to convert a 

decimal number to binary and more generally 

to base b.

• Relationship between a number and the 

number of its digits.

1



Binary Representation

The binary representation is a number n is 𝒅𝒌−𝟏𝒅𝒌−𝟐⋯𝒅𝟏𝒅𝟎
where 𝑑𝑖 ∈ {0,1}, 𝑖 = 0,… , 𝑘, such that 𝒏 = 𝒅𝒌−𝟏 × 𝟐𝒌 −𝟏 𝒅𝒌−𝟐 × 𝟐𝒌 −𝟐 +⋯𝒅𝒌−𝟐 × 𝟐 + 𝒅𝟎
For example, convert 114 to binary

114 = 64 + 32 + 16 + 2

Binary representation is  

1110010

2



PSN. Convert 250 to binary.

3



Base b

Give a positive integers b and n, n is represented in base 

b as 𝑑𝑘−1𝑑𝑘−2⋯𝑑1𝑑0
where 0 ≤ 𝑑𝑖 ≤ 𝑏 − 1, 𝑖 = 0,… , 𝑘, 𝑑𝑘−1 ≠ 0 , such that 𝑛 = 𝑑𝑘−1 × 𝑏𝑘 −1 𝑑𝑘−2 × 𝑏𝑘 −2 +⋯𝑑1 × 𝑏 + 𝑑0
This representation is unique.

When b = 8 the representation is called octal and when 

b = 16 the representation is called hexadecimal. 

4



Proof by contradiction that 

representation is unique

Suppose n could be represented in two ways, i.e., 𝑛 = 𝑑𝑘−1𝑑𝑘−2⋯𝑑1𝑑0 = 𝑒𝑗−1𝑒𝑗−2⋯𝑒1𝑒0
Then, (𝑑𝑘−1× 𝑏𝑘 −1 +⋯+ 𝑑1 × 𝑏 + 𝑑0) − (𝑑𝑗−1× 𝑏𝑗 −1 +⋯+ 𝑑1× 𝑏 + 𝑑0) = 0

Suppose the highest power of b that doesn’t get canceled out is m. Bring 

the term with bm to one side (without loss of generality, we will assume the 

left-hand-side) and all other terms to the other side. Then𝑐 × 𝑏𝑚= 𝑐0 + 𝑐1 × 𝑏 +⋯+ 𝑐𝑚−1 × 𝑏𝑚−1𝑐, 𝑐0, … , 𝑐𝑚−1, where 0 < 𝑐 < 𝑏 and −𝑏 < 𝑐𝑖 < 𝑏 for 𝑖 = 0, 1, … ,𝑚 − 1. It 

follows that 𝑏𝑚 ≤ (𝑏 − 1) + (𝑏 − 1) × 𝑏 +⋯+ (𝑏 − 1) × 𝑏𝑚−1≤ 𝑏 − 1 1 + 𝑏 +⋯+ 𝑏𝑚−1 = 𝑏−1 𝑏𝑚−1𝑏−1 = 𝑏𝑚 − 1
We have 𝑏𝑚 ≤ 𝑏𝑚 − 1, a contradiction. 5



Converting to Binary Using Recursion

Give a recursive algorithm for changing from 

decimal to binary, i.e., base 2.

6



Solution

Use the fact that the least significant digit of n in its binary 

representation is

n mod 2

and the decimal number obtained by removing the least significant 

binary digit in its binary representation is 𝑛2
which is obtain by n/2 using integer division.  For example, consider 

n = 225:

225 → 11100001
225 mod 2 = 1

225/2 = 112 → 1110000
7



Converting 114 to binary using recursion114 ↔ 1142 114 mod 2 = 57 057 0↔ 572 57 mod 2 0↔ 28 1 028 1 0 ↔ 282 28 mod 2 1 0↔ 14 0 1 014 0 1 0 ↔ 142 14 mod 2 0 1 0 ↔ 7 0 0 1 07 0 0 1 0↔ 72 7 mod 2 0 0 1 0 ↔ 3 1 0 0 1 03 1 0 0 1 0 ↔ 32 3 mod 2 ↔ 1 1 1 0 0 1 0
Binary representation is  1110010

8



PSN. Convert 250 to binary.

9



Recursive Function for Converting a 

Decimal number to Binary

Give pseudocode for a recursive function 

BinRep(n) for converting an number n to its 

binary (base 2) representation stored in a string. 

Assume + performs the operation of adding a 

digit, i.e.,

“10001101” + 0 → “100011010” 

10



Convert to Binary

function BinRep(n) recursive

Input: n (a positive integer) 

Output: string for binary representation of n

if n == 0 return (empty string)

return( BinRep(n/2) + n mod 2 ) 

end BinRep

11

Note that BinRep works for n strictly positive.  If n is zero, it returns the empty string.  

We need to code it this way, since otherwise a leading 0 will be added to all n greater 

than 0.



Changing to a General Base

Design a recursive algorithm for 

changing from decimal to any given 

base b.

12



Solution

Use the fact that the least significant digit of n in 

its binary representation is𝑛 mod 𝑏
and the decimal number obtained by removing 

the least significant binary digit in its binary 

representation is 𝑛𝑏
which is obtain by n/b using integer division.   

13



Recursive Function for Converting a 

number of Binary

Give pseudocode for a recursive function 

BinRep(n) for converting an number n to its  

base b representation stored in a string. Assume  

+ performs the operation of adding a digit.  For 

example for b = 8

“20367471235” + 6 → “203677712356”

14



Convert to Base b

function BinRep(n,b) recursive

Input: n,b (positive integers) 

Output: string for representation of n in base b

if n == 0 return (empty string)

return( BinRep(n/b) + n mod b ) 

end BinRep

15

Note that BinRep works for n strictly positive.  If n is zero, it returns the empty string.  

We need to code it this way, since otherwise a leading 0 will be added to all n greater 

than 0.



Relationship between a number and 

the number of its digits

In analyzing algorithms involving integers, the input 
size of an integer n is the number of digits of n.  

A 100-digit number is enormous 
in the sense it  is greater than the 
number of atoms in the known 
universe, which is estimated to be 
about 1083, which as only 84 digits.

Yet a 100-digit number n has input size 100, which is 
relatively small and can be stored in an array of size 
100.

16



Problem Solving Notebook

Show that the number d of decimal digits 

of n is approximately log10n.

What about number of binary digits? Octal 

digits? hexadecimal digits? 

17



There are 10 kinds of people in the 
world.

Those who know binary and those 

who don’t.

18

10 people



Greatest Common Divisor (gcd) 

The greatest common divisor of two integers 𝑎
and 𝑏, denoted by gcd(𝑎, 𝑏) is the largest 

integer that divides both.

1



Computing gcd using prime 

factorization

The prime factorization of a number n is the unique product of 

prime powers that equals n.

For example, 3000 = 23 × 3 × 537700 = 22 × 52 × 7 × 11
The gcd(a,b) is obtained the product of the of the smallest power 

of each prime from the prime factorizations of a and b, where 

the smallest power is 0 if the prime does not occur in the 

factorization.gcd 3000,7700 = 22 × 52 = 100
2



• It turns out that prime factorization for large 

integers, i.e., hundreds of digits, is a “hard” problem 
and it is not known how to solve in real time. 

• However, the greatest common divisor can be 

computed efficiently using an algorithm that dates all 

the way back to Euclid who lived c. 325 – c. 270 BC

in Alexandria, Egypt.

3



Recurrence Relation for gcd

The key idea is to use the recursion relationgcd 𝑎, 𝑏 = gcd(𝑏, 𝑟), where 𝑟 = 𝑎 mod 𝑏.

The initial condition is gcd 𝑎, 0 = 𝑎.
The concept of 0 had not be invented in Euclid’s 
time, so the initial condition he used 

was more cumbersome.  

4



Example gcd 3000,77003000 = 0 × 7700 + 30007700 = 2 × 3000 + 17003000 = 1 × 1700 + 13001700 = 1 × 1300 + 4001300 = 3 × 400 + 100400 = 4 × 100 + 0gcd 3000,7700 = gcd 7700,3000 =gcd 3000,1700 = gcd 1700,1300 = gcd 1300,400 =gcd 400,100 = gcd 100,0 = 100
5



PSN. Using Euclid’s algorithm compute 
gcd(585,1035)

6



Recursive version of Euclid GCD

function EuclidGCD(a,b)

Input: a, b (nonnegative integers)

Output: gcd(a,b)

if (b == 0) 

return a

else

r = a mod b

return EuclidGCD(b,r)   

endif

end EuclidGCD

7



Nonrecursive version

function EuclidGCD(a,b)

Input: a, b (nonnegative integers)

Output: gcd(a,b)

while b ≠ 0 do

Remainder = a mod b

a = b

b = Remainder

endwhile

return(a)

end EuclidGCD

8



Most iterations performed

Note that if a < b, then a and b get swapped after the first 
iteration, so no need to make this test.

Proposition. Euclid’s algorithm in computing gcd(a,b) 
where a ≥ b makes at most 2n iterations where n is the 
number of binary (base 2) digits of a.  

Proof. After one iteration a is replaced with b and b with  r
and after another iteration b is replaced with r.  Thus, after 
two iterations a is replaced with r.   But, the remainder r in 
binary has at least one fewer digits than a.  Thus, after 
every other iteration a is reduced by at least one binary 
digit. It follows that the number of iterations performed in 
computing gcd(a,b) for any a and b where a ≥ b is at most 
twice the number of binary digits of a.

9



For what input does Euclid’s algorithm 
take the most time?

Answer:  a = fib(n), b = fib(n+1), where fib(n) is the 

nth Fibonacci number.

Fibonacci numbers: 0  1  1  2  3  5  8  13  21  35 56 …

gcd(35,56) = gcd(56,35) = gcd(35,21) = gcd(21,13) = 

gcd(13,8) = gcd(8,5) = gcd(5,3) = gcd(3,2) = gcd(2,1) 

= gcd(1,1) = gcd(1,0) = 1

10



Applications of gcd

• Lowest Common Multiple

• Fraction in Lowest Form

• Cryptographic algorithms such as RSA

11



Lowest Common Multiple (lcm)lcm 𝑎, 𝑏 is the smallest multiple of both 𝑎 and 𝑏.

Proposition. lcm 𝑎, 𝑏 = 𝑎𝑏gcd 𝑎,𝑏 .

Example. 𝑎 = 585, 𝑏 = 1035𝑎 × 𝑏 = 585 × 1035 = 605475gcd (585,1035) = 45lcm (585,1035) = 23 × 585 = 13 × 1035= 13455= 60547545 12



Fraction in Simplest Form𝑎𝑏 in simplest form is 
𝑎/gcd(𝑎,𝑏)𝑏/gcd(𝑎,𝑏)

Example. 𝑎 = 585, 𝑏 = 1035𝑎𝑏 = 5851035𝑎/gcd(𝑎,𝑏)𝑏/gcd(𝑎,𝑏) = 585/gcd(585,1035)1035/gcd(585,1035)= 585/451035/45 = 1323
13

That’s 
simplest



Extended Euclid’s algorithm
We now design an extension of Euclid’s GCD 
algorithm that computes integers g, s, t, where 

g = gcd(a,b) and 

g = sa + tb.

This algorithm has important applications 

including use in the design of the RSA public-key 

cryptosystem which is used extensively for 

encryption and digital signatures on the Internet.   

14



Example of Extended Euclid’s algorithms for 𝑎 = 6700, 𝑏 = 30006700 = 2 × 3000 + 700 ⇒ 700 = 6700 − 2 × 30003000 = 4 × 700 + 200 ⇒ 200 = 3000 − 4 × 700700 = 3 × 200 + 100 ⇒ 100 = 700 − 3 × 200200 = 2 × 100 + 0
100 = 700 − 3 × 200.  Substituting from above we have100 = 700 − 3 × 3000 − 4 × 700 . Simplifying we have100 = 13 × 700 − 3 × 3000. Substituting from above we have100 = 13 × 6700 − 2 × 3000 − 3 × 3000. Simplifying we have100 = 13 × 6700 − 29 × 3000

We have solved 𝑔 = gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏 for 𝑎 = 6700, 𝑏 = 3000 obtaining𝑔 = 100, 𝑠 = 13, 𝑡 = −29. 15



PSN. Solve 𝑔 = gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏
for 𝑎 = 1035, 𝑏 = 585

16



Extended Euclid GCD 

Suppose we have g = s’b + t’r
By definition a = bq + r, where q is the quotient, so 

that 

r = a – bq

Substituting this value for r into g = s’b + t’r we 

obtain

g = s’b + t’ (a – bq) = t’a + (s’ – t’q)b

Assigning  s = t’ and t = s’ – t’q, we have the desired 

result

g = sa + tb
17



Extended Euclid GCD Algorithm

function ExtEuclidGCD(a,b,g,s,t)

Input: a, b (nonnegative integers)

Output: return g = gcd(a,b) and integers s and t such that sa + tb = g

if (b == 0)    //BOOTSTRAP CONDITION

g = a

s = 1

t = 0 

else

r = a mod b

q = a/b

ExtEuclidGCD(b,r,g,s,t)    //recursive call

stemp = s

s = t

t = stemp – t*q

end ExtEuclidGCD

18



Historically Bad Joke

Humphrey Bogart is sitting in his bar in 
Casablanca, enjoying the sublime beauty 
of geometry...

He raises his glass and says, 

"Here's looking at Euclid."

19



Rivest-Shamir-Adelman (RSA) 
Public-Key Cryptosystem

RSA is a widely used public key 

cryptosystem.

1



Public Key Cryptosystem

• Pioneered by Diffie and Hellman.

• Compute a public key E and private key D, where E is 

used to encrypt messages and D is be used to 

decrypt messages that have been encrypted using E.  

• These keys need to be chosen so that it is 

computationally infeasible to derive D from E.  

Anyone with the public key E is able to encrypt a 

message, but only someone knowing D is able (in 

real time) to decrypt an encrypted message.  

• Many public-key cryptosystems have been designed.  

In this course we cover the popular RSA public key 

cryptosystem due to Rivest, Shamir, and Adleman.  
2



RSA Cryptosystem

1. Compute two large primes p and q and set n = pq.

2. The Euler Totient Function φ(n) is the number of positive 

integers less than n that are co-prime (relatively prime) to n

Chose the public key e to be a positive integer that is relatively 

prime to φ(n) = (p – 1)(q – 1), i.e., gcd(e,φ(n)) = 1.

3. Computer the private key using formula

d = e-1 (mod φ(n))

3



In PSN we used the Principle of Inclusion-
Exclusion to show that

φ(n) = (p – 1)(q – 1).

4



Solution to PSN Repeated Here

Let 𝑈 = 1,… , 𝑛 , 𝐴 = 𝑝, 2𝑝,… , 𝑞𝑝 , 𝐵 = {𝑞, 2𝑞, … , 𝑝𝑞}
The number of numbers in U that are divisible by either p or q

is given by𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − 𝐴 ∩ 𝐵 = 𝑞 + 𝑝 − 1
Since both p and q are prime, the number of numbers in U

that are relatively prime to n equals the number of numbers 

in U that are neither divisible by p nor q, which is given by𝐴 ∪ 𝐵 = 𝑛 − 𝐴 ∪ 𝐵= 𝑛 − 𝑞 + 𝑝 − 1= 𝑝𝑞 − 𝑞 − 𝑝 + 1 = (𝑝 − 1)(𝑞 − 1)



Implementation of RSA – Computing Large 

Primes p and q

• Small primes can be computed quickly.  But how to 
compute a large prime p involving for example 100  
digits. 

• The solution is to randomly generate  the 100 digits 
and to test whether it is prime.  There are efficient 
algorithm for doing this. 

• The issue then becomes will a positive result occur, i.e., 
a prime be found, in reasonable time or are the prime 
numbers too sparse.  

• It follows from one off the deepest theorems in all of 
mathematics known as the prime number theorem 
that they are not.

6



Prime Number Theorem

Let 𝜋 𝑛 be the number of primes less than or equal to n. The prime 

number theorem states that 𝜋 𝑛 ~ 𝑛ln 𝑛
i.e., 𝜋 𝑛 approaches 𝑛ln 𝑛 as 𝑛 → ∞. 

For example, consider 𝑛 = 999,999. ln(999,999) ≈ 14. This means 

more than 1/14 of the numbers less than 999,999 are prime.  

Therefore, if we test, say 50 randomly chosen 6-digit numbers, we 

have a good chance of hitting one that is prime.  

For 100-digit number, ln 𝑛 < 4× log10 𝑛 ≈ 400. Therefore, if we 

test, say 1000 randomly chosen 100-digit numbers, we have a good 

chance of hitting one that is prime. 7



Implementation of RSA – Computing 

Private Key from Public Key

PSN. Describe algorithm for computing 

private key d = e-1 (mod Φ(n))

8



Hint

Show that private key d = s, where 

se + tφ(n) = 1.  Then explain how to 

compute s.

9



Prime Factorization is a Hard Problem

• Why can’t an eavesdropper also compute 𝑑 by 

factoring 𝑛 into the two primes 𝑝 and 𝑞 and then 

computing 𝜑 𝑛 = (𝑝 − 1)(𝑞 − 1). Once this done 

the eavesdropper can use the Extended GCD 

algorithm to compute the private key 𝑑.

• Fortunately, the eavesdropper can’t do so in real time 
because Prime Factorization is hard even for a 

number 𝑛 that is the product of two primes.  

• No algorithm is currently known that can do it in real 

time for integers that are hundreds of digits long.
10



RSA 

Encryption and Decryption of Messages

Message m is encrypted using formula:

c ≡ me (mod n).

Encrypted message c is decrypted using formula:

m ≡ cd (mod n).

Note to be able to recover m, m < n.
11



Theorem on which correctness of RSA 

is based

Theorem (Rivest-Shamir-Aldelman). Let  

n= pq where p and q are two prime 

numbers, let e be an integer that is 

relatively prime with φ(n), and let d be its 

multiplicative inverse mod φ(n), that is, ed

≡ 1 (mod φ(n)) . Then, for any integer m,

med ≡ m (mod n).

12



Euler’s Totient Theorem
To prove the Theorem will need to apply a 
generalization of  Fermat’s Little Theorem due to Euler 
called Euler’s Totient Theorem.

Theorem (Euler). Let n and b be relatively prime 
numbers. Then 𝑏𝜑(𝑛) ≡ 1 (mod 𝑛) .

Note that φ(n) = n – 1 for n prime so we obtain 
Fermat’s Little Theorem as a corollary.

13



Proof of Euler’s Totient Function

Let 𝑍𝑛∗ = {𝑟1, 𝑟2, … , 𝑟𝜑 𝑛 } be the set of number 

between 1 and n – 1, inclusive, that are relatively 

prime to n. For example𝑍12∗ = {1,5,7,11}
Let 𝑏 ∈ 𝑍𝑛∗ .  Then, 𝑏 is invertible mod n.𝑏−1 can be computed using extended Euclid GCD.

14



Proof of Euler’s Totient Theorem Similar to 
Proof of Fermat’s Little Theorem

Since 𝑏 is invertible mod n, it follows that 𝑓 𝑥 =𝑏𝑥 mod 𝑛 , 𝑥 ∈ 𝑍𝑛∗ is a bijective function from 𝑍𝑛∗ to itself, so that(𝑏𝑟1) 𝑏𝑟2 ⋯(𝑏𝑟𝜑 𝑛 ) ≡ 𝑟1𝑟2⋯𝑟𝜑 𝑛 (mod 𝑛)⇒ 𝑏𝜑(𝑛)𝑟1𝑟2⋯𝑟𝜑 𝑛 ≡ 𝑟1𝑟2⋯𝑟𝜑 𝑛 (mod 𝑛)⇒ 𝑏𝜑(𝑛) ≡ 1 (mod 𝑛)
15



Examples n = 12, b = 5 & b = 11𝑍12∗ = {1,5,7,11}(5×1) × (5×5) × (5×7) × (5×11) ≡ 5 × 1 × 11 × 7 (mod 12)⇒ 54 × (1 × 5 × 7 × 11) ≡ 1 × 5 × 7 × 11 (mod 12)⇒ 54 ≡ 1 (mod 12)
(11×1) × (11×5) × (11×7) × (11×11) ≡ 11 × 7 × 5 × 1 (mod 12)⇒ 114 × (1 × 5 × 7 × 11) ≡ 1 × 5 × 7 × 11 (mod 12)⇒ 114 ≡ 1 (mod 12)

16



Proof of Theorem

Since ed ≡ 1 (mod φ(n)), it follows that 

ed = φ(n)k + 1,

for some integer k.

17



Proof for case when m and n are 

relatively prime 

Applying ed = φ(n)k + 1 from previous 
slide and  Euler’s Totient Theorem 

med = mφ(n)k + 1

= (mφ(n))km

≡ (1)km  (mod n) 

= m   (mod n)

18



Prime Number Dilemma 

Should you say "All prime numbers are 
odd except one“?

Or "All prime numbers are odd except 
two?"

19



Graph Theory

Reading:

Textbook: Chapter 6, pp. 331-340

Supplemental Notes on Graphs and Networks



Definition of a graph

• A graph G is a mathematical structure defined by a set of 

vertices (also called nodes) V = V(G) and a set of edges E = 

E(G), where each edge e is an unordered pair {a,b} of 

distinct vertices.   

• Edge e can also be denoted by ab. We say that e is 

incident with its end vertices a and b and say that a and b

are adjacent.

• We denote the number of vertices and edges by n = n(G) 

and m = m(G), respectively, i.e., n = |V| and m = |E|. 

• The number n of vertices is the order of G and the 

number m of edges is the size of G.



Drawing in Plane

Graphs can be drawn in the plane where vertices are 
represented as points and two points are joined with a 
line or curve if their corresponding vertices  are adjacent. 

For example the graph G = (V,E) where

V = {1,2,3,4,5,6} and E = {12, 15, 23, 25, 34, 45, 46}

can be drawn is the plane as follows.



What is origin of the term vertex on edge

Above are the regular polyhedra that were studied 
by Euler. They are represented by graphs where the 
vertices of the polyhedron correspond to the vertices 
of the graph and the edges of the polyhedron 
correspond to the edges of the graph. 



Graph representing cube



Modeling Networks

Graphs play a fundamental role in the design and 
analysis of networks and their associated algorithms 
and protocols, since they model the underlying 
topologies on which networks are built. 



Discovery of fundamental properties and 
characteristics by mapping out topology of P2P 

network

Designed a Parallel Network Crawler:

Discovered small world property, power laws and 
“short-circuiting” phenomenon
A snapshot of portion of Gnutella P2P network



Graph of Social Network

http://express-press-release.net/logo/SocialNetworkGraph-people.gif


Sensor Networks

Simulations using Qualnet, ns-2

CDMC Center at UC: Crossbow TelosB Motes testbed 

MoteLab testbed at Harvard

TelosB Mote One of the three floor maps of MoteLab



Wireless Sensor Networks

Base station



Wireless Mesh Network

CDMC Wireless Mesh 
Network 

testbed at UC



Transportation Network

– Nodes are cities, transfer points 
or depots, edges are roads or 
transport routes



Genetic regulatory networks

Nodes are genes or proteins, 

edges are regulatory 

interactions



Network Service

Given:
Set of disconnected peers 

Set of public routers (e.g., PlanetLab)

Each peer connects to Δ closest routers

Workload:

Peer-to-Peer file transfer

Problem:

How to maximize throughput in an 
online way (no global knowledge of demands) ?

Peer Peer

PeerPeer

Router

RouterRouter

Router

Peer

Peer Peer

Peer



There are many more examples of graphs modeling 
networks.  

Extracurricular Exercise. Search the web for more 
examples.



Vertex Degrees

The degree of a vertex v  V, denoted by deg(v), is 
the number of edges incident with v. 

Let  = (G) denote the minimum degree over all the 
vertices

Let  = (G) denote maximum degree over all the 
vertices 

Then,

 (G) ≤ deg(v) ≤ (G)



Euler’s Degree Formula

Theorem. The sum of the degrees over all the 
vertices is twice the number of edges, i.e., 

𝑣 ∈𝑉 𝑑𝑒𝑔 𝑣 = 2𝑚 .



Proof of Euler’s Degree Formula

Every edge is incident with exactly two vertices. 
Therefore, when summing the degrees over all the 
vertices we count each edge exactly twice, once for 
each of its end vertices.



Corollary. The number of vertices of odd 
degree is even.

This follows from Euler’s Degree Formula 
and the fact that a sum of numbers is 
even number if and only if an even 
number of these numbers is odd.



PSN. Obtain a formula for the average 
degree α of a vertex in terms of the number 
of vertices n and the number of edges m. 

Hint. Use Euler’s Degree Formula.



The average degree is at least as great as the 
minimum degree and no greater than the maximum 
degree, i.e., 

 ≤ α ≤ .

Thus, we have 𝛿 ≤ 2𝑚𝑛 ≤ Δ



Regular graphs

A graph 𝐺 is 𝑟-regular if each vertex has the same 

degree 𝑟.   

Proposition. If 𝐺 is an 𝑟-regular graph with 𝑛 vertices 

and 𝑚 edges, then 𝑚 = 𝑛𝑟2 .
Proof. It follows from the definition of 𝑟-regular that 𝑑𝑒𝑔 𝑣 = 𝑟, ∀𝑣 ∈ 𝑉. Using Euler’s degree formula 
we have 𝑚 = 12𝑣 ∈𝑉 𝑑𝑒𝑔 𝑣 = 12𝑣 ∈𝑉 𝑟 = 𝑛𝑟2



Complete graph

The complete graph on 𝑛 vertices denote by 𝐾𝑛 is 
the graph where every pair of vertices are adjacent.



PSN. How many edges does the complete 
graph 𝐾𝑛 have?



Subgraphs

• A subgraph H of G is a graph such that V(H)  V(G) and E(H)  E(G). 

• A subgraph H that is a tree is a subtree of G, or simply a tree of G. 

• A subgraph H of G is called a spanning subgraph if H contains all the 

vertices of G. When a subgraph H of G is a tree, we use the term 

spanning tree of G. 

• Given a subset U of vertices of G, the subgraph G[U] induced by U is 

the subgraph with vertex set U and edge set consisting of all edges 

in G having both end vertices in U.  

• A component of a graph G is a connected induced subgraph of G

that is not contained in a strictly larger connected subgraph



Sample Graph G
U = {2, 3, 4, 5, 6, 7}

two connected 

components



Bipartite graphs

A graph is bipartite if there exists a bipartition of the vertex set V into 

two sets X and Y such that every edge has one end in X and the other 

in Y. 

The complete bipartite graph Ki,j is the bipartite graph with n = i + j

vertices, i vertices belonging to X and j vertices belonging to Y, such 

that there is an edge joining every vertex x  X to every vertex y  Y.  



Matching Students to Companies



Handshaking Problem

UC students get together for a Bearcat reception 
and shake hands (pre-COVID).  Is there a 
scenario where everyone has shaken a different 
number of hands from everyone else?

Surprisingly the answer is no.  No matter who 
shakes hands in a group of people, there must 
be two people who have shook exactly the same 
number of hands!



Handshaking Theorem

Handshaking Theorem. Let 𝐺 be a graph with at least 

two vertices. Then, at least two vertices have the same 

degree.

Proof. 

• If there is two isolated vertices then we have two 

vertices both have degree 0 and we are done. 

• If there is only one isolated vertex remove it.  Now we 

have 𝑛 vertices having 𝑛 – 1 possible degrees. 



Proof cont’d

• Take the 𝑛 vertices to be pigeons and the possible 

degrees 1, 2, …, 𝑛 – 1 to be pigeonholes.

• By the Pigeonhole Principle two pigeons are in 

the same pigeonhole, i.e., two vertices have the 

same degree.



Graph Isomorphism, Paths, Connectivity

Reading:

Textbook: Chapter 6, Sections 6.3, 6.4 pp. 340-346
Section 6.7 pp. 352-357

Supplemental Notes



Graph Isomorphism

Consider the three graphs below.  Same if labels removed.  They are not 

the same graph but they are isomorphic graphs.

0

1

3

2 3

0

2

1

V = {0,1,2,3}

E = {01,03,12,13,23}

V = {0,1,2,3}

E = {01,02,03,12,23}

A

C

D

B

V = {A,B,C,D}

E = {AC,AD,BC,BD,CD}



Graph Isomorphism

Two graphs G = (V,E) and G= (V,E) are isomorphic if there exists 
a bijective mapping : V → V from the vertex set V of G onto the 
vertex set V of G such that adjacency relationships are 
preserved, that is, 

{u,w}  E iff {(u),(w)}  E. 

The mapping  is called an isomorphism. Deciding whether two 
graphs are isomorphic is, in general, a difficult problem. 



Isomorphisms for sample graphs

0

1

3

2 3

0

2

1

V = {0,1,2,3}

E = {01,03,12,13,23}

V = {0,1,2,3}

E = {01,02,03,12,23}

A

C

D

B

V = {A,B,C,D}

E = {AC,AD,BC,BD,CD}

𝛽 0 = 3𝛽 1 = 0𝛽 2 = 1𝛽 3 = 2
𝛽 0 = 𝐶𝛽 1 = 𝐵𝛽 2 = 𝐷𝛽 3 = 𝐴



Degrees and Isomorphism

If two graphs having different degree sequences, where the degree 

sequence is the non-increasing sequence of the vertex degrees, then they 
are not isomorphic. The converse is not true. It is possible for two graphs 
to have exactly the same degree sequence and not be isomorphic.  For 
example, the graphs below each have 6 vertices of degree 3, but they are 
not isomorphic because the first graph K3,3 is bipartite and the other graph 
contains a triangle so is not bipartite.

A

2 3

B C

1 4

2

0

3

1 5



Graph Isomorphism Problem is Hard

No one has discovered a polynomial time algorithm for 
solving the graph isomorphism problem, although it is 
not NP-complete.



Paths  

• A path P of length p (p ≥ 0) joining vertices u and v is an alternating sequence of p + 1 vertices 
and p edges u0e1u1e2 . . . epup such that u = u0, v = up, where ei joins ui – 1 and ui, i = 1,2, . . . , p. 

• We call u0 and up the initial and terminal vertices, respectively, and the remaining vertices in 
the path the interior (or internal) vertices. 

• Vertices in a path can be repeated, but edges must be distinct. 

• If u0e1u1e2 . . . epup includes repeated edges it is called a walk.

• In the textbook and literature when vertices are repeated, but not edges, it is sometimes called a 
trail.  Other times it is called a path and a simple path refers to one where vertices are not 
repeated. This is not consistent in the literature.

• Since the path P is completely defined by the sequence of vertices u0u1 . . . up, we often use this 
shorter sequence to denote P. 

• If u = v, then the path is called a closed path or circuit. 

• A simple circuit or cycle is a simple closed path. 



Important special types of paths and cycles

• A path that contains every edge in the graph exactly once is called an 
Eulerian path (or Eulerian trail). 

• A circuit that contains every edge exactly once is called an Eulerian 
circuit or Eulerian tour. 

• A simple path that contains every vertex in the graph is called a 
Hamiltonian path. 

• A cycle that contains every vertex in the graph is called a 
Hamiltonian cycle.



Distance and Diameter

• The distance between u and v, denoted by d(u,v), is the 
length of a path from u to v that has the shortest (minimum) 
length among all such paths. 

• By convention, if u and v are not connected, then d(u,v) = . 

• The diameter of G is the maximum distance between any 
two vertices. 



Distance between every pair of vertices and the 
diameter for a sample graph G

We show the distances using a 6-by-6 distance matrix, whose ijth entry 
is given by d(i,j).



Connectedness

Two vertices u, v  V are connected if there exists a 
path (of length 0 when u = v) that joins them. 

PSN. Show that the relation R where 

uRv iff u is connected to v

is an equivalence relation on V. 



Connected Components

Each equivalence class C of vertices, together with all incident edges, is 
called a connected component or simply component of G. 

When G has only one component, then G is connected; otherwise, G is 
disconnected.

4

2

0

3

1 5

6

7

9

8
10

11

13

12

15

Disconnected graph with 4 connected components



Algorithm for determining whether graph is connected

• We can test whether a graph is connected by performing 

either a Depth-First Search (DFS) or Breadth-First Search 

(BFS) starting from any vertex of the graph.  

• These search techniques are covered in detail an 

algorithms course, i.e., EECE 4040 and CS 4071.

• Here we introduce DFS.



Depth-First Search (DFS)

procedure DFS(G,v) recursive

Input:   G (a graph with n vertices and m edges)

v (a vertex where search begins) 

Output:  the depth-first search of G with starting vertex v

Mark[v] ← 1  // mark v as visited

call Visit(v)

for each vertex u adjacent to v do

if Mark[u] = 0 then call DFS(G,u) endif

endfor

end DFS



Action of DFS for Sample Graph and Initial Vertex

DFS tree (obtained by keep parent pointer from u to v) shown in bold.

DFS order (order in which vertices are visited): 6, 1, 0, 2, 3, 4, 5, 8, 7

G =

Starting at vertex v = 6



Computing Connected Components

The connected components can be computed using 
Depth-First Traversal (DFT) or Breath-First Traversal 
(BFT). 



DFT and Computing the Connected Components

• The idea behind DFT is to scan all the vertices and if a 
vertex v is unvisited perform a DFS at v outputting all the 
vertices that are visited.

• These visited vertices are the vertex set of the connected 
component containing v.

• Once we have the vertex set we can obtain the 
component simply by adding all incident edges.



Pseudocode for Depth-First Traversal

procedure DFT(G)

Input: G (a graph with n vertices and m edges)

Output: Depth-first traversal

for v← 0 to n – 1 do

if Mark[v] = 0 then

DFS(G,v)

endif

endfor

end DFT



Coloring Graphs

A proper vertex k-coloring of a graph is a 

coloring of the vertices using k colors so that 

there are no monochromatic edges, i.e., both 

ends of each edge are colored differently.



Finding a proper k-coloring is hard except for k = 2

Is we mentioned in a previous lecture that finding a 

proper k-coloring is hard even for k = 3.

PSN. Describe an algorithm for finding a proper 2-

coloring if it exists. Note that this is equivalent to 

determining whether a graph is bipartite.



Characterization of Bipartite Graphs

A graph is bipartite iff it does not contain an odd 

cycle.

Equivalently, a graph can be properly 2-colored iff

it does not contain an odd cycle.



Proof

Suppose a graph G is bipartite.  Properly color G using colors 0 and 1. Then every cycle is 

alternately colored 0 and 1, so has even length.

Conversely, suppose G contains no odd cycles.  Without loss of generality we can assume 

G is connected. Choose any vertex u and color the vertex v𝑑 𝑢, 𝑣 mod 2
where 𝑑 𝑢, 𝑣 is the distance between u and v.  

Assume this 2-coloring is not proper.  Then there is a monochromatic edge 𝑥, 𝑦 , i.e., 𝑥
and 𝑦 are colored the same.  But this implies that 𝑑 𝑢, 𝑥 + 𝑑 𝑢, 𝑦 is even.  It follows that 

the closed walk consisting of a shortest path from 𝑢 to 𝑥 followed by the edge 𝑥, 𝑦
followed by a shortest path from 𝑦 to 𝑢 has odd length. But this walk must contain a cycle 

of odd length, which contradicts the assumption the G contains no odd cycles.  Thus, the 

2-coloring is proper. 



4-Color Theorem

A famous theorem, which was unsolved more than a century, 

is known as the 4-color theorem, which states that a planar 

graph can be properly vertex 4-colored. 

It was formally conjectured by Guthrie in 1856 and proved by 

Appel and Haken in 1970.  They use a computer program to 

evaluate hundreds of different cases.  



It is amazing that a planar graph on n vertices can be 

properly vertex colors using only 4 colors. A general graph 

may require up to n colors to properly color the vertices.

PSN.  Which graph on n vertices requires n colors to 

properly color?



Application of Proper Coloring

• Suppose we have a set of wireless devices for which 

we would like to assign channels, so their broadcasts 

don’t interfere with each other.

• Construct a graph with the devices as vertices

• Join two vertices with an edge whenever that are close 

enough to interfere with each other.  

• A proper k-coloring gives an assignment of k channels   

so there is no interference.



What color is the wind?

Blew



Planar Graphs

Reading:

Supplementary Notes 

Intro to Graph Theory

for definition of planar graphs and

Euler’s Polyhedron Theorem

Supplement Notes Planar Graphs for Kuratowski’s characterization of 
nonplanar graphs and the 4-Color Theorem



Planar Graphs

• A fundamental property of graphs is whether or not they can be drawn, i.e., 

embedded in the plane, or equivalently on the sphere, without crossing edges.  

• A graph G that can be embedded in the plane is called planar, otherwise G is 

called nonplanar.   The regions determined by an embedding of a graph in the 

plane are called faces. 

• We will denote the set of faces by F and the number of faces by f.

• There are many ways to embed a planar graph in the plane.



Nonplanar Graphs

Not all graphs are planar.  For example, the graphs K5 and K3,3 are 
both nonplanar graphs. 

No matter how you draw these graphs in the plane at least two 

edges will cross.



At most two edges can be put inside 5-cycle without crossings.

Similarly at most two edges can be put outside. Total of only 9 

edges.  Putting a 10th edge in will result in crossing edges  

Only one edge can be put inside joining 

opposite ends of 6-cycle. Similarly, only one

edge can be put on outside. Total of 8 edges. 

Putting 9th edge in will result in crossing edges.

𝐾5 𝐾3,3



Subdivision of a graph

A subdivision S of G is a graph obtained from G by replacing each edge e
with a path joining the same two vertices as e (subdividing the edge e). 

G is a subdivision of itself (replace each edge with a path of length 1). 

If G is nonplanar, then every subdivision of G is nonplanar.

If G contains a nonplanar graph, then G is nonplanar. 



Characterization of non-planar graphs

Clearly, if a graph contains a subgraph that is isomorphic to a 

subdivision of K5 or K3,3 it is nonplanar. Surprisingly the 

converse it true.  This is a famous result of Kuratowski.

Kuratowski’s Theorem. A graph G is nonplanar iff it contains a 

subgraph that is isomorphic to a subdivision of K5 or K3,3. 



Dual Graphs



Euler’s Degree Formulas for faces

The degree of a face is the number of  edges incident with the face, 
i.e., the number of edges on its boundary.  Using the dual graph Euler’s degree formula for vertices translates to a degree formula 
faces: 𝑔∈𝐹 deg 𝑔 = 2𝑚
Corollary. If G is face s-regular, then

𝑚 = 𝑠𝑛2



Euler’s Polyhedron Formula

Let G be a connected planar graph with 𝑛 vertices, 𝑚 edges and 𝑓
faces. Then, 𝑛 − 𝑚 + 𝑓 = 2
Note the condition that G is connected is necessary. Otherwise, the 
following disconnected planar graph would be a counterexample.

𝑛 = 6, 𝑚 = 6, 𝑓 = 3 ⇒ 𝑛 − 𝑚 + 𝑓 = 3



PSN. Verify Euler’s polyhedron formula for the 
following graphs.



Proof of Euler’s Polyhedron Formula using 
Mathematical Induction

We will perform the induction on the number of edges 𝑚.

Basis Step. Since the planar graph must be connected, the 

fewest edges occurs when the planar graph is a tree in which 

case 𝑚 = 𝑛 − 1
If the planar graph is a tree there is only one face, i.e., 𝑓 = 1. 

Thus, we have𝑛 − 𝑚 + 𝑓 = 𝑛 − 𝑛 − 1 + 1 = 2.
This verifies the basis step.



Induction Step

• Assume true for all connected planar graph having 𝑚 = 𝑘 edges.  

• Consider any connected planar graph G having 𝑚 = 𝑘 + 1 edges.

• Let T be any spanning tree of G.

• Since G is not a tree it must contain an edge e not in T.

• Delete edge e to obtain the graph G’
• G’ has 𝑘 edges so we can apply the Induction Hypothesis to obtain2 = 𝑛 𝐺′ − 𝑚 𝐺′ + 𝑓 𝐺′= 𝑛 𝐺 − 𝑚 𝐺 − 1 + 𝑓 𝐺 − 1= 𝑛 𝐺 − 𝑚 𝐺 + 𝑓(𝐺)

Q.E.D



Characterization of Regular Polyhedrons

A polyhedron is planar graph that is vertex r-regular and face s-regular.

By Euler’s degree formulas for vertices and faces respectively, we have𝑛 = 2𝑚𝑟 , 𝑓 = 2𝑚𝑠 .

By Euler’s Polyhedron Formula  𝑛 − 𝑚 + 𝑓 = 2
Substituting we obtain 2𝑚𝑟 − 𝑚 + 2𝑚𝑠 = 2
Solving for 𝑚 we have 𝑚 = 22𝑟 + 2𝑠 − 1



𝑚 = 22𝑟 + 2𝑠 − 1
Now 𝑟 ≥ 3 and 𝑠 ≥ 3.  It follows that either 𝑟 = 3 or 𝑠 = 3, because if 
they were both at least 4, the denominator would be smaller than or 
equal to 0. Further, both 𝑟 and 𝑠 must be no greater than 5, otherwise 
the denominator would be smaller than or equal to 0. Summarizing3 ≤ 𝑟 ≤ 5 and 3 ≤ 𝑠 ≤ 5 and either 𝑟 = 3 or 𝑠 = 3.



Case 𝑟 = 3, 𝑠 = 3 ⇒ 𝑚 = 22𝑟 + 2𝑠 −1 = 6
Case 𝑟 = 3, 𝑠 = 4 ⇒ 𝑚 = 22𝑟 + 2𝑠 −1 = 12
Case 𝑟 = 3, 𝑠 = 5 ⇒ 𝑚 = 22𝑟 + 2𝑠 −1 = 30
Case 𝑟 = 4, 𝑠 = 3 ⇒ 𝑚 = 22𝑟 + 2𝑠 −1 = 12
Case 𝑟 = 5, 𝑠 = 3 ⇒ 𝑚 = 22𝑟 + 2𝑠 −1 = 30

icosohedron



Average degree of a vertex in a planar graph

Note that every face must have degree at least 3, otherwise the graph would be a 

multigraph with two edges joining the same pair of vertices. Thus, by Euler’s degree 
formula for faces, we have 2𝑚 = 𝑔∈𝐹 deg 𝑔 ≥ 𝑔∈𝐹 3 = 3𝑓
Thus, 𝑓 ≤ 23 𝑚 . Substituting in Euler’s Polyhedron Formula  2 = 𝑛 − 𝑚 + 𝑓 ≤ 𝑛 − 𝑚 + 23 𝑚⇒ 𝑚 ≤ 3𝑛 − 6.
Using the formula we derived using Euler’s degree formula for the average degree 𝛼 of a 

vertex and substituting we obtain𝛼 = 2𝑚𝑛 ≤ 2×(3𝑛 −6)𝑛 = 6 − 12𝑛 < 6



• We showed that the average degree of a vertex in 

a planar graph is strictly less than 6.  

• It follows that there must exist a vertex of degree 5 

or smaller.

PSN. Using the above result, apply mathematical 

induction to show every planar graph can be properly 

6-colored.



Why did the polyhedron go to jail?

For running a pyramid scheme.



Spanning Trees, Eulerian Circuits

Textbook Reading

Chapter 6, Section 6.11 pp. 374-377 (Spanning Trees)

Section 6.8, pp. 361-364 (Eulerian Circuit)

1



Definition of a Spanning Tree

Let 𝐺 be a connected graph with 𝑛 vertices and 𝑚 edges.

A spanning tree is a tree of 𝐺 that contains, i.e., 

spans, all the vertices.

The number of edges of a spanning tree is 𝑛 – 1.

2



Enumerating Spanning Trees

Clearly, the complete graph 𝐾𝑛 has the most  

spanning trees for a graph on n vertices

3

1 12963 16 125

16807 262144 1000000004782969 2357947691

Can you guess the formula for the number of 

spanning trees of 𝐾𝑛?



Cayley’s Theorem
By a theorem of Caley the number of spanning 

trees of Kn, the complete graph on n vertices is𝑛𝑛−2.

4



Minimum Spanning Tree

5

• Now associated a positive real weight 𝑤(𝑒) with 

each edge 𝑒 ∈ 𝐸.

• The weight of a spanning tree of 𝑇, denoted 

w(T), is the sum of the w-weights over all its 

edges. 

• If T has minimum weight over all spanning trees 

of G, then we call T a minimum spanning tree 

(MST).



Minimum Spanning tree for Sample Graph G

6

All 8 spanning trees of sample graph G are shown 

above. The minimum spanning tree has weight 9.



Kruskal’s Algorithm
Input: Connected graph G = (V,E), weighting w of the edges

Output: Minimum Spanning Tree T, i.e., weight(T) is minimum 

Design Strategy employed: the greedy method

Notation: As usual we let n = |V| (order of G) and m =|E| (size of G)

Compute a sequence of n forests F0, F1, ..., Fn – 1, where F0 is the 

empty forest, i.e., consists of a set of n isolated nodes and Fi is 

obtained from Fi – 1 by adding a single edge ei , denoted

Fi = Fi – 1 + ei , i = 1, 2, …, n – 1,

where ei is chosen so that it has minimum weight among all the 

edges not previously chosen and doesn’t form a cycle when added 

to Fi – 1. 

7



Action of Kruskal’s for sample graph G

8



PSN. Find a MST in the following weighted 

graph.

9



Konigsberg Bridge Problem

• Is it possible to take a stroll around Königsberg

(now called Kaliningrad) crossing every bridge 

once and return to where one started.  



Graph Modelling

• The Konigsberg Bridge Problem was solved 

by the famous mathematician Euler, by 

modelling with a graph. 

The solution is to find an Eulerian Tour or Eulerian 

Circuit, i.e., a circuit that contains every edge.



We model with a multigraph. There are two 

edges (a multiedge with multiplicity 2) joining A 

and B and A and C.

12



Eulerian Circuit

Theorem 1.  A multigraph 𝐺 contains an Eulerian 

circuit iff it is connected and every vertex has 

even degree.  

All the vertices of the multigraph corresponding 

to the Konigsberg Bridge Problem have odd 

degree.  Therefore it doesn’t 
contain a Eulerian Circuit.



Proof of Theorem 1

• If 𝐺 is disconnected then clearly if doesn’t contain an 
Eulerian circuit.

• When ever an Eulerian circuit enters a vertex, it must 

leave the vertex.  

• Therefore, the number of edges used to enter each 

vertex 𝑣 equals the number of edges used to leave 𝑣.  

• Thus, the number of edges of the circuit incident with 𝑣
is even.  

• But, an Eulerian circuit contains each edge.  

• It follows that every vertex of 𝐺 has even degree. 14



Proof of Theorem 1 cont’d
• Conversely, suppose 𝐺 is connected and every 

vertex has even degree.

• We use Proof by Contradiction to show 𝐺
contains an Eulerian circuit.

• Suppose to the contrary that 𝐺 does not 

contain an Eulerian circuit.   

• Let C be a longest circuit, i.e., 𝐶 = 𝑢0𝑢1⋯𝑢𝑗𝑢0
where 𝑗 is maximum.  

15



Proof cont’d
• Since 𝐺 is connected and 𝐶 is not an Eulerian circuit, then, there must exist a 

vertex 𝑢𝑖 of 𝐶 such that 𝑢𝑖 is adjacent to some vertex 𝑣1 not in 𝐶. 

• Mark the vertices of 𝐶 as visited. 

• Since every vertex of 𝐺 is even, there are an even number of unvisited vertices 

in the neighborhood of every vertex. 

• Grow a trail starting with the edge 𝑢𝑖𝑣1and keep choosing as the next vertex an 

unvisited vertex.

• Eventually, the trail must return to vertex 𝑢𝑖.
• Denote this closed trail, i.e., circuit, by 𝐶′ = 𝑢𝑖𝑣1⋯𝑣𝑘𝑢𝑖
• Construct the circuit 𝐶′′ by splicing 𝐶 at vertex 𝑢𝑖 and inserting the circuit 𝐶′, 

i.e., 𝐶′′ = 𝑢0𝑢1⋯ 𝑢𝑖𝑣1⋯𝑣𝑘𝑢𝑖⋯𝑢𝑗𝑢0.

• 𝐶′′ is a longer than 𝐶, contradicting our assumption that 𝐶 is a longest circuit.

Q.E.D.
16



Eulerian Trail

Corollary.  A multigraph contains an 

Eulerian trail iff it is connected and 

exactly two vertices have odd degree.  

PSN. Prove the corollary using Theorem 1.

17



What did the beaver say to the tree?

It’s been nice gnawing you!

18



Hypercubes and Hamiltonian Cycles

Reading:

Supplemental Notes on Hypercubes and Hamiltonian 
Cycles



Hypercube Definition

The k-dimensional hypercube H
k

has 2k vertices consisting of the 

set of all 0/1 k-tuples, i.e., 

V(H
k
) = {(x1, . . . , x

k
) | x

i
 {0,1}, i = 1, . . . , k. 

Two vertices in V(H
k
) are joined with an edge of H

k
whenever they 

differed in exactly one component.



Recursive Construction of a Hypercube

The hypercube 𝐻𝑘 of dimension 𝑘 is obtained from the 
hypercube 𝐻𝑘−1 of dimension 𝑘 – 1 by taking two 
isomorphic copies of 𝐻𝑘−1 and joining corresponding 
vertices with a matching.

0d hypercube



PSN.

a) Obtain a formula for the number of edges of 𝐻𝑘.

b) Obtain a formula for the diameter of 𝐻𝑘.



Hamiltonian Cycle

Sir William Rowen Hamilton’s Icosian Game

5



Goal of Icosian Game

Vertices of the icosahedron represent cities.  The goal is 
to perform a tour of the 20 cities and return to the 
starting vertex, following an edge of the icosahedron to 
move between two cities.  

This is done by placing pegs on the board so that Peg i
and Peg i + 1, i = 1, 2, …, 19, and Peg 20 and Peg 1 are on 
adjacent positions, i.e., end vertices of an edge of the 
icosahedron.

Can you solve the problem?

6



Solution to Icosian Game

Solution involves finding a Hamiltonian cycle in the 
icosahedron:

7



Hamiltonian cycles

A Hamiltonian cycle is a cycle that contains all the 
vertices.  The problem of determining whether a 
graph has a Hamiltonian cycle is NP-complete.



Gray Codes

k-bit Gray code is an ordering of k-bit strings so that 
consecutive strings differ in exactly one position.   

An example of a 4-bit Gray Code:

Gray codes have applications to rotary and optical encoders, 
Karnaugh maps and error detection.

0000  0001  0011  0010  0110  0111  0101  0100  1100  1101  1111  1110  1010  1011  1001  1000  0000



Gray Codes correspond to Hamiltonian Cycles 
in Hypercubes

0000  0001  0011  0010  0110  0111  0101  0100  1100  1101  1111  1110  1010  1011  1001  1000  0000



Theorem. The 𝑘 -dimensional hypercube 𝐻𝑘
contains a Hamiltonian cycle for all 𝑘 ≥ 2.

Proof by Induction.

Basis Step. 𝐻2 contains a Hamiltonian cycle. 



Induction Step

• Assume the Theorem is true for 𝐻𝑘 , i.e., 𝐻𝑘 contains a 

Hamiltonian cycle 𝐶 = 𝑢0𝑢1⋯𝑢𝑛−1𝑢0, where 𝑛 is the number of 

vertices of 𝐻𝑘, i.e., 𝑛 = 2𝑘.

• Consider the hypercube 𝐻𝑘+1.  Now 𝐻𝑘+1 consists of two 

isomorphic copies 𝐻𝑘. Let 𝐶′ = 𝑢0′ 𝑢1′ ⋯𝑢𝑛−1′ 𝑢0′ be the cycle 

corresponding to 𝐶 in the second copy.  

• By the recursive construction there is a matching joining 

corresponding vertices.  In particular there is an edge joining 𝑢0
and 𝑢0′ and an edge joining 𝑢1 and 𝑢1′ .  

• We construct a Hamiltonian cycle in 𝐻𝑘+1 as follows:𝑢1⋯𝑢𝑛−1𝑢0𝑢0′ 𝑢𝑛−1′ 𝑢𝑛−2′ ⋯𝑢1′
This complete the Induction Step.   Q.E.D.



Illustration of Induction Step for 𝑘 = 3

𝑢1 𝑢0 𝑢1′ 𝑢0′



Hamiltonian cycles in Dense Graphs

Theorem 3.2 (Dirac). A graph G with 𝑛 ≥ 3
vertices having minimum degree at least  

𝑛2 is 

Hamiltonian, i.e., contains a Hamiltonian cycle.



PSN

Show that Dirac’s Theorem is as strong as possible by 
giving a counterexample of a graph where every vertex 

has degree at least 
𝑛2 − 1, but the graph is not 

Hamiltonian.  

a) Find with a counterexample where the graph is not 

connected for 𝑛 = 10. 

b) Find a counterexample for any 𝑛, where 𝑛 is even. 



A generalization of Dirac’s Theorem

Theorem 3.3 (Ore). Let G be a graph with 𝑛 ≥ 3
vertices such that, for every pair of nonadjacent 
vertices 𝑢 and 𝑣, deg 𝑢 + deg 𝑣 ≥ 𝑛. Then G is 
Hamiltonian.



Proof of Ore’s Theorem

• Let 𝐺 = (𝑉, 𝐸) be a maximal graph on n vertices that 

satisfies Ore's conditions but which is not Hamiltonian.  

• Clearly, G is not the complete graph, so that there exists 

at least one pair u, v of nonadjacent vertices.  

• It follows from the maximality of G that the graph G+uv

obtained by adding an edge uv contains a Hamiltonian 

cycle that contains edge uv.  

• It follows that G contains a  𝑢-𝑣 Hamiltonian path 𝑃 = 𝑢1𝑢2…𝑢𝑛 (where 𝑢 = 𝑢1, 𝑣 = 𝑢𝑛).



Proof of Ore’s Theorem cont’d
• 𝑛 − 3 pigeonholes: edges of path 𝑢2𝑢3, 𝑢3𝑢4, … , 𝑢𝑛−2𝑢𝑛−1
• Pigeons: edges incident to either 𝑢1or 𝑢𝑛 that are not in the path 

• Since deg 𝑢 + deg(𝑣) ≥ 𝑛, it follows that there are at least 𝑛 edges incident 

to either 𝑢1or 𝑢𝑛, so there are at least 𝑛 − 2 pigeons

• For 𝑢1𝑢𝑖+1 ∈ 𝐸 have pigeon fly into pigeonhole 𝑢𝑖𝑢𝑖+1, 𝑖 = 2,… , 𝑛 − 2.
• For 𝑢𝑛𝑢𝑖 ∈ 𝐸 have pigeon fly into pigeonhole 𝑢𝑖𝑢𝑖+1, 𝑖 = 2,… , 𝑛 − 2.
• Note that pigeons from 𝑢1 fly into different pigeonholes and pigeons from 𝑢𝑛

fly into different pigeonholes.

𝑢𝑖 𝑢𝑖+1𝑢1 𝑢𝑛
Pigeonhole



Conclusion of Proof

• Since there are more pigeons than pigeonholes two pigeons 𝑢1𝑢𝑖+1 and 𝑢𝑛𝑢𝑖 must fly into the same pigeonhole. Thus, 𝑢1𝑢𝑖+1 ∈ 𝐸 and 𝑢𝑛𝑢𝑖 ∈ 𝐸.

• Construct the Hamiltonian circuit𝑢1𝑢2…𝑢𝑖𝑢𝑛𝑢𝑛−1𝑢𝑛−2…𝑢𝑖+1𝑢1
• But this contradicts our assumption that 𝐺 is not Hamiltonian.

Q.E.D.

𝑢𝑖 𝑢𝑖+1𝑢1 𝑢𝑛
Remove this edge

Add these two edges



How do you add flavor to your algorithm?

Use a Boolean cube.



Implementation of Graphs and Digraphs

Textbook Reading:

Chapter 6, Section 6.5, pp. 346-347

Section 6.14, pp. 392-394.



Standard Implementations

Let G = (V,E) be a graph, where V = {0,1, . . . , n – 1}

Two standard implementations of  G are  

• adjacency matrix implementation  

• adjacency lists implementation 



Adjacency Matrix Implementation

The adjacency matrix of a graph G is the n  n
symmetric matrix A = (aij) given by





−= }.1,,0{,
otherwise,0

.in adjacent  are  and  vertices1
nji

Gji
aij 



Sample Graph and its Adjacency Matrix



Pros and Cons

• Implementing G using its adjacency matrix makes it easy to 
perform many standard operations on G, such as adding a new 
edge or deleting an existing edge.  

• The adjacency matrix of G allocates n2 memory locations no 
matter how many edges are in the graph. 

• Implementing G using its adjacency matrix is inefficient if the 
graph is sparse, i.e., the number of edges of G is small relative 
to the number of vertices. 

• For example, if G is a tree with n vertices, then G has only n – 1 
edges, which means only n – 1 out of n2 entries of the matrix 
are being used, i.e., have the value 1. 

• If graph is dense, e.g., m  (n2), then the adjacency matrix 
representation is an efficient way to implement G.



Adjacency Lists Implement 

In the adjacency lists implementation we 

represent the graph with a list of edges the are 

adjacent to each node.

0 : 1  3

1 : 0   2  3  4

2:  1   3

3:  0   1   2

4:  1

G =



Order Doesn’t Matter
The order that the vertices are listed in the adjacency lists does not 

matter.  Another representation could be

0 : 1  3

1 : 4   2  0

2:  1   3

3:  2   0   1

4:  1

The implementation of a graph for I/O (input-output) simply stores the 

collection of vertices and the collection of pairs representing the edges of 

the graph.  For example, there are XML format for graphs such as Graph 

Modelling Language (GML) and GraphML and that stores the graph this 

way.

When a graph is input the edges, i.e., pair of vertices, are inserted into the 

adjacency list in the order they are read.



Implementation of lists and graphs  

A discussion of the implementation of lists using linked lists is beyond the scope 

of this course. It is covered in a Data Structures course. Below pictorially shows 

two implementations of a graph using linked lists, the first with an array of 

header nodes and the second with a linked list of header nodes.



Adjacency Matrix vs. Adjacency Lists

Adjacency Matrix allows for direct access so is more 
efficient for adding and deleting edges.

Adjacency Lists is more efficient in terms of storage

If a graph is dense, i.e., close to the complete graph it 
is often better to use adjacency matrix

If the graph is sparse it is generally more efficient to 
use adjacency lists



Must use Adjacency Lists for Big Graphs
• For big graph such as the friendship graph for Facebook, i.e., the 

vertices are users and two users are joined with an edge if there 

friends, then it is necessary to use the adjacency list implementation.

• Number of users on Facebook is over one billion.

• Therefore size of adjacency matrix would be the square of a billion 

would be a billion billion or 1,000,000,000,000,000,000

• Much too large to store!

• On the other hand the average number of friends of a user on 

Facebook is estimated to be about 338.  

• It follows from Euler’s degree formula that the average degree equals 
2m/n. Therefore we have338 = 2𝑚𝑛 ⇒ 2𝑚 = 338𝑛 = 338,000,000,000

• The size of the adjacency lists would be twice the number of edges 

plus the number of vertices or 2𝑚 + 𝑛 = 339,000,000,000
• 339 billion is not too large to store.



Digraphs

• A digraph 𝐷 = (𝑉, 𝐸) consists of a vertex set 𝑉 and 

an (directed) edge set 𝐸, where the (directed) edges 

are (ordered) pairs of vertices.  

• Equivalently, 𝐸 is a relation on the set 𝑉, called an 

adjacency relation.

• For (𝑎, 𝑏) ∈ 𝐸 we call 𝑎 the tail and 𝑏 the head.

• For convenience (𝑎, 𝑏) can be written simply as 𝑎𝑏.



Drawing a digraph in the plane

𝑉 = {0,1,2,3,4,5,6}𝐸 = { 0,1 , 0,6 , 2,3 , 3,2 , 3,4 , 4,5 , 5,1 , 5,4 , 6,1 , 6,3 , 6,4 , 6,5 }



Implementation of Digraphs

Digraphs are implemented in a similar way to graphs 
except the edges are ordered.

The adjacency matrix of a digraph D, whose vertices 
are labeled 0,1, . . . , n – 1, is the n  n matrix A = (aij) 
defined by

𝑎𝑖𝑗 = ቊ10 if there is an edge from 𝑖 to 𝑗otherwise



Adjacency Matrix for Sample Digraph



Adjacency List Implementation of a Digraph 

0:  1  6

1:

2:  3

3:  4  2

4:  5

5:  1  4

6:  1  5  4  3



Weighted Digraphs and Matrices

There is a 1-1 correspondence between square 
matrices and weighted digraphs.

4 61 10 0 03.4 80 07.5 0 0 20 0
This yields and important connection between graph 
theory and linear algebra.

4

7.5

8

2

3.4

1

6

10



PSN. Which is more general, a graph or 
digraph?



Directed paths, trails, walks

Directed paths, trails, walks, cycles, circuits are 
defined the same for digraphs as for graphs, except 
that the edges must be consistently directed from 
the initial to the terminal vertex.  

Example of a directed path from 0 to 1 of length 3 
and a directed cycle of length 3:



Powers of the Adjacency Matrix and Counting 
Walks

• Let 𝐷 = (𝑉, 𝐸) be a digraph with 𝑉 = {1, 2, …𝑛}
having adjacency matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛.

• Let 𝐴𝑘 = (𝑎𝑖𝑗(𝑘))𝑛×𝑛 denote the 𝑘𝑡ℎ power of 𝐴.
Theorem. 𝑎𝑖𝑗(𝑘) equals the number of walks from 𝑖 to 𝑗
of length 𝑘.



Proof of Theorem by Mathematical Induction

Basis Step. 𝑎𝑖𝑗(1) = 𝑎𝑖𝑗 and there is a directed walk of length 1 from 𝑖 to 𝑗 iff there is an 

edge (𝑖, 𝑗), so that the Theorem is true for 𝑘 = 1. 

Induction Step.  Assume true for 𝑘, i.e., 𝑎𝑖𝑗(𝑘) is the number of directed walks of length 𝑘
from 𝑖 to 𝑗.
Consider the case 𝑘 + 1. Clearly, 𝐴𝑘+1 = 𝐴𝐴𝑘.

It follows from the definition of matrix multiplication that𝑎𝑖𝑗(𝑘+1) = 𝑎𝑖1𝑎1𝑗(𝑘) + 𝑎𝑖2𝑎2𝑗(𝑘) +⋯+ 𝑎𝑖𝑛𝑎𝑛𝑗(𝑘)
By the Induction Hypothesis 𝑎1𝑗(𝑘) is the number of directed walks from 1 to 𝑗 of length 𝑘 . 

Since 𝑎𝑖1 is 1 if there is an edge from 𝑖 to 𝑗 and 0 otherwise, it follows that 𝑎𝑖1𝑎1𝑗(𝑘) is the 

number of directed walks of length 𝑘 + 1 from 𝑖 to 𝑗 that go through vertex 1. Similarly, 𝑎𝑖2𝑎2𝑗(𝑘) is the number of directed walks of length 𝑘 + 1 from 𝑖 to 𝑗 that go through 

vertex 2, and so forth all the way up to 𝑛 . It follows that 𝑎𝑖𝑗(𝑘+1) = 𝑎𝑖1𝑎1𝑗(𝑘) + 𝑎𝑖2𝑎2𝑗(𝑘) +⋯+ 𝑎𝑖𝑛𝑎𝑛𝑗(𝑘) is the total number of directed walks of length 𝑘 + 1 from 𝑖 to 𝑗.   Q.E.D.



Extracurricular

Gephi is an award-winning open-source platform for 
visualization and exploration for  graphs, which you 
can download free:

https://gephi.org/

Another nice open-source graph software package is 
Network X:

https://networkx.github.io/

https://gephi.org/
https://networkx.github.io/


Sparse Graph Joke



Digraphs

Textbook Reading:

Section 6.14 pp. 392-394

Section 6.17 pp. 399-401



Digraphs

• A digraph 𝐷 = (𝑉, 𝐸) consists of a vertex set 𝑉 and an (directed) 
edge set 𝐸, where the (directed) edges are (ordered) pairs of 
vertices.  

• Equivalently, 𝐸 is a relation on the set 𝑉, called an adjacency 
relation.

• For (𝑎, 𝑏) ∈ 𝐸 we call 𝑎 the tail and 𝑏 the head.

• For convenience (𝑎, 𝑏) can be written simply as 𝑎𝑏.

• The out-neighborhood of 𝑎 is all vertices 𝑏 that are out-adjacent 

or simply adjacent to 𝑎, i.e., for which there is an edge (𝑎, 𝑏).
• The in-neighborhood of 𝑏 is all vertices 𝑎 that are in-adjacent to 𝑏, i.e., for which there is an edge (𝑎, 𝑏).

𝑎 𝑏



Outdegree and Indegree of a vertex  

𝑉 = {0,1,2,3,4,5,6}𝐸 = { 0,1 , 0,6 , 2,3 , 3,2 , 3,4 , 4,5 , 5,1 , 5,4 , 6,1 , 6,3 , 6,4 , 6,5 }

The outdegree of a vertex 𝑣, denoted 𝑜𝑢𝑡𝑑𝑒𝑔(𝑣), is the number of 

edges that have tail 𝑣, i.e., the cardinality of the out-neighborhood of 𝑣.

The indegree of a vertex 𝑣, denoted 𝑖𝑛𝑑𝑒𝑔(𝑣), is the number of 

edges that have head 𝑣, i.e., the cardinality of the in-neighborhood of 𝑣.
0, 3

1, 31, 1

2, 0
4, 1

2, 1

0, 3



Proposition.σ𝑣∈𝑉 𝑜𝑢𝑡𝑑𝑒𝑔 𝑣 = σ𝑣∈𝑉 𝑖𝑛𝑑𝑒𝑔 𝑣 = 𝑚.



Proof of Proposition

• The sum of the out-degrees over all the vertices 

counts every edge once, i.e., each edge is counted 

only in the out-degree of the tail of the edge.  

• Similarly, the sum of the in-degrees over all the 

vertices counts every edge once, i.e., each edge is 

counted only in the in-degree of the tail of the 

edge.  



Note that we obtain Euler’s degree formula for 
vertices of an (undirected) graph as a special case via 
that transformation to its equivalent symmetric 
digraph.

3 2

2 3

2, 23, 3

2, 2 3, 3

3 + 2 + 3 + 2 = 10 3 + 2 + 3 + 2 = 10

3 + 2 + 3 + 2 = 10



DAG

A Directed Acyclic Graph or DAG is a digraph without 
any directed cycles. 



Sources and Sinks

Source – a vertex v where all edges incident with v are 
directed out of v, i.e., in-degree(v) = 0

Sink – a vertex v where all edges incident with v are 
directed into v, i.e., out-degree(v) = 0

PSN. Show that a (finite) DAG must always 
contain a source and a sink. 



Result not true for infinite graphs

Infinite grid with the edges oriented to the right and 
up is acyclic but has no source nor sink.

…

⁞

⁞

…



Round-Robin Tournament

• A round-round tournament is a tournament where 

every player plays every other player.  

• The win-loss results (we assume no ties) can be 

modeled using a digraph.

• The vertices of the digraph correspond to the players.

• An edge is directed from u to v whenever player u

defeats player v.

• Since tournament is round-robin, the underlying 

undirected graph is complete, i.e., for each pair of 

distinct vertices u and v, either (u,v) or (v,u) is an edge.



Example Modeling Round-Robin Tournament

Results of round-robin tournament an digraph 

modeling these results:

A beats D

B beats A

C beats A, B, D

D beats B A

B

C

D



Directed Hamiltonian Cycle

Proposition. A DAG modelling a round-robin 

tournament contains a directed Hamiltonian path 

joining the unique source (player who won all games) 

to the unique sink (player who lost all games).



Proof by Mathematical Induction

We perform induction on the number of vertices 𝑛.

Basis Step.  A tournament of 𝑛 = 2 vertices (players) 𝑎 and 𝑏 contains the 

directed Hamilton path 𝑎𝑏 consisting of the single edge.

Induction Step. Assume true for 𝑛 = 𝑘, i.e., any DAG modeling a round-robin 

tournament with 𝑘 players contains a directed Hamiltonian path from the 

source vertex to the sink vertex.

Now consider a DAG 𝐷 modeling a round-robin tournament with 𝑘 + 1 and let 𝑎 and 𝑏 denote the source and sink vertices, respectively. 

Let 𝐷′ be the DAG obtained from 𝐷 by deleting vertex 𝑎 and all incident edges 

and let 𝑎′ denote the source vertex of 𝐷′.   Since 𝐷′models a round-robin 

tournament with 𝑘 players, by the Induction Hypothesis it contains a directed 

Hamiltonian path 𝐻′ from 𝑎′ to 𝑏.

Construct the directed Hamiltonian path from 𝑎 to 𝑏 in 𝐷 by taking the edge 𝑎𝑎′ followed by 𝐻′.    Q.E.D.



Ranking of Players

The directed Hamiltonian path determines a ranking 
of the players from best to worst.

Ranking: C  B  A  D

A

B

C

D



Ordering Tasks

• n tasks to be performed

• Certain tasks must be performed before others. 

• For example, if we are building a house, the task of 

pouring the foundation must precede the task of 

laying down the first floor. However, another pair 

of tasks might not need to be done in a particular 

order, such as painting the kitchen and painting the 

bathroom. 

• The problem is to obtain a linear ordering of the 

tasks in such a way that if task u must be done 

before task v, then u occurs before v in the linear 

ordering.



Modeling with a DAG

Construct a digraph 𝐷 = (𝑉, 𝐸) where𝑉 is the set of tasks and (𝑢, 𝑣) ∈ 𝐸
whenever task u must precede, i.e., be

performed before, task v.



Proof by contradiction that D is a DAG

Suppose 𝐷 is not a DAG. Then it contains a directed cycle 𝑣1, 𝑣2, ⋯ , 𝑣𝑘 , 𝑣1. It follows from the definition of D that

Task 𝑣1 must be performed before task 𝑣2.

Task 𝑣2 must be performed before task 𝑣3.

⁞      
Task 𝑣𝑛−2 must be performed before task 𝑣𝑛−1.

Task 𝑣𝑛−1 must be performed before task 𝑣1.

But this implies that task 𝑣1 must be performed before 
itself, a contradiction.



Modelling with a DAG cont’d

• The vertices of the DAG D correspond to the tasks,

and a directed edge from u to v is in D iff task u

must precede task v.

• A topological sorting of D is a listing of the vertices

such that if uv is an edge of D, then u precedes v in

the list.

• A topological-sort labeling of D is a labeling of the

vertices in D with the labels 0, . . . , n – 1 such that

for any edge uv in D, the label of u is smaller than

the label of v.



Topological Sort – Straightforward Algorithm

Repeat until all vertices of DAG have been visited

1. Find a vertex v such that all vertices in the in-

neighborhood of v have been visited

2. Insert v at the end of the list

3. Mark v as visited



PSN. Use straightforward algorithm to 
find topological sort for the following 
DAG:



More efficient topological sort using DFT

Perform a DFT traversal keeping track of the 

order in which the vertices are explored. A 

vertex becomes explored when all the vertices 

in its out-neighborhood have been visited, i.e., 

when we backtrack from the vertex.

The topological sort order is the reverse of the 

explored order.



Action for a sample list

Topologically sorted list:

7   9   8   5  14   13   12   6   4   2   3  1   10   11  0  

0 1 2

310

9

8 7 6 5 4

13

12

11 14



What's the best way to watch a Fly 
Fishing tournament ?

Live stream



PageRank

1

Reading:

Supplementary Notes on PageRank



Importance of Ranking Web Pages

Ranking of web pages is very important for users of the Web as well as 

business.  

• For a given user query, there could be thousands, millions and even 

billions of web pages that satisfy the query.  

• The ranking of the web pages effects the order in which their hyperlinks 

are listed.  

• Most people only look at the first few pages of results for their query, 

sometimes only looking at the hyperlinks listed at the top of the first page.  

• From the user’s point of view, it is important that web pages of “high 
quality”, “high prestige” get listed first. 

• For a business, it makes a great deal of difference whether a hyperlink to 

their web page shows up near the beginning of the list, for example,  near 

the top of the first page, potentially bringing in lots of new business.
2



PageRank

PageRank, was developed in 1996 at Stanford by 

Larry Page and Sergey Brin, the cofounders of 

Google.   

3



Ph.D. Students at Stanford

Page and  Brin were both Ph.D. students at 

Stanford, when they came up with the killer 

application of PageRank and pioneered the 

Google Search Engine.

4



Idea              behind PageRank

PageRank assigns a measure of 

“prestige” or ranking (PageRank) to 

each web page, which is independent of 

any query.  It is defined using a digraph 

based on the hyperlink structure of the 

web called the web digraph.   

5



Business Flop?

They tried to sell their search engine idea using 

PageRank to

But it was rejected 

6



Founding of Google 

After the rejection by Yahoo, Page and Brin started 
their own company, which they called Google. 

One of the first investors in their company was a 
professor at Stanford, David Cheriton, who had 
received his M.S. and Ph.D. degrees in computer 
science from the University of Waterloo. Cheriton 
later donated $25 million to support graduate 
studies and research in the School of Computer 
Science, subsequently renamed David R. Cheriton 
School of Computer Science, at the University of 
Waterloo.

7



Web Digraph

• The web digraph W 

• Vertex set V(W) consists of web pages 

• Edge set E(W) corresponds to hyperlinks, 

that is, an edge is included from page p

to page q whenever there is a hyperlink 

reference (href) in page p to page q.

8



In its simplified form PageRank of a web 

page is measured by its in-degree in W

9



Drawback with Simplistic Definition

Using just the in-degree of a web page p as its rank has 
two weakness: 

• Web pages q that contain a hyperlink to p may have 
different measures of prestige. 

• Web pages q that contain a hyperlink to p may have 
different out-degrees. 

If  q has lower prestige, we don’t want to count it as 
heavily. 

Similarly, we don’t want to count it as much if it has high 
out-degree, i.e., it includes a lot of hyperlink references. 

10



Formula for PageRank

The PageRank R[p]  of web page p
satisfies:𝑅 𝑝 =𝑞∈𝑁𝑖𝑛(𝑝) 𝑅[𝑞]𝑑𝑜𝑢𝑡(𝑞) .
where dout(q) is the out-degree of page q, 
or equivalently the number h(q) of 
hyperlink references that q contains.

11



PageRank has Myriad Applications

PageRank has been used for many other applications besides Google 

including applications to

• Bibliometrics

• Social and information network analysis

• Link prediction and recommendation. 

• Systems analysis of road networks

• Gene Searching in Biology: an app called ToppGene Suite was 

developed at UC and Cincinnati Children’s Hospital by Anil Jegga

https://toppgene.cchmc.org/

• Index called pagerank-index (Pi) for quantifying the scientific impact 

of researchers  12

https://toppgene.cchmc.org/


PageRank Concept Existed Before  

The concept behind PageRank was not invented by Page and 
Brin, but was first applied by them to the hyperlink structure of 
the Web in the design Google.  In fact, in their famous paper 

The Anatomy of a Large-Scale Hypertextual Web Search Engine

they only devote one paragraph to PageRank.  To quote their 
paper: 

“Academic citation literature has been applied to the web, 
largely by counting citations or backlinks to a given page. This 
gives some approximation of a page's importance or quality.” 

13

http://infolab.stanford.edu/~backrub/google.html


Computing PageRank for Mini Web 

Digraph W = (E,V)

= 

14

 



𝑅1 = 12𝑅3 + 13𝑅4𝑅2 = 13𝑅1 + 13𝑅4𝑅3 = 13𝑅1 + 𝑅2 + 13𝑅4𝑅4 = 13𝑅1 + 12𝑅3
15

 

Page Rank Equations:



Expressing Linear Equations in Matrix Form

𝑅 = 0 0 12 1313 0 0 1313 1 0 1313 0 12 0 𝑅, where 𝑅 = 𝑅1𝑅2𝑅3𝑅4
or equivalently,

𝑅 = 0 13 13 130 0 1 012 0 0 1213 13 13 0
𝑇
𝑅

16



Random Walk Matrix

Let B be the matrix for a random walk on W, i.e., 

𝐵 𝑝, 𝑞 = ቐ 1𝑑𝑜𝑢𝑡 𝑝 , 𝑝𝑞 ∈ 𝐸 𝑊 ,0 , otherwise.
For           Web, B is the matrix for a random walk!0 13 13 130 0 1 012 0 0 1213 13 13 0 17



PSN.  For the mini-web below 

a) Give the Page Rank equations

b) Give the associated matrix equation

c) Give transpose matrix and verify it is the 

matrix for a random walk. 

18



PageRank is Principal Eigenvector of 

Matrix of a Random Walk on W

Letting be the PageRank R be the vector or 
array, i.e., R[p] is the PageRank of Page p, the 
formula for PageRank is 

R = BTR.

R is an eigenvector of the matrix B (and BT) for 
the eigenvalue 1.  Since 1 is the largest 
eigenvalue of B, R is principal eigenvector.

19



Standard Linear Algebra Algorithms to Compute 

Principal Eigenvector  

Using standard linear algebra algorithms to 

compute Principal Eigenvector is prohibitive for 

large matrices. 

At the present time, the last realistic estimate of 

the World Wide Web was about 19.2 billion web 

pages.  It is not possible to store a matrix of this 

size, because the number of entries is 

astronomical!

368,640,000,000,000,000,000  
20



Efficient Algorithm by Iterating 

Ri = BTRi-1, i = 1, 2, …

or equivalently, 

𝑅𝑖 𝑝 =𝑞∈𝑁𝑖𝑛(𝑝) 𝑅𝑖−1[𝑞]𝑑𝑜𝑢𝑡(𝑞) , 𝑖 = 1, 2, …
where R0 can chosen to be a vector of 

nonnegative reals whose entries sum to 1. 21



Random Walk Interpretation of 

PageRank
By a simple induction argument, we obtain 

Ri = (BT)iR0, i = 1, 2, …

By a theorem of Markov, Bi[p,q] equals the probability 

of a random walk on W starting a page p and ending up 

at page q after i steps. 

Thus,

(BT)i[p,q] = Bi[q,p] = probability that a random walk 

starting at page q will end up at page p after i steps.
22



Equivalent Interpretation

Bi[p][q] is the probability that an aimless web 

surfer starting page p reaches q in i steps (by 

following a path of i hyperlinks). 

Equivalently, 

(BT)i[p][q] is the probability that the aimless web  

surfer starting a page q will reach p after i steps.

23



Random (Aimless) Web Surfer 

and PageRank

Since the entries of R0 are positive and sum 
to 1, R0 determines a probability 
distribution on the set of pages V(W), 
where R0[q] is the probability that the 
aimless surfer begins surfing from page q. 

Then Ri[p] = (BT)iR0[p] is the probability the 
surfer will end up on page p after i steps.    

24



Interesting Special Case

For a particular page q, e.g., your web 
page, set R0[q] = 1 and set R0[p] = 0, 
for all p ≠ q.  

Then Ri[p] = (BT)iR0[p] is the probability 
that a random surfer starting at page q
will end up at page p after i steps.    

25



Conditions for convergence

The vector Ri will not necessarily converge to the 
principle eigenvector R unless the digraph W
satisfies certain conditions.   

Condition 1. W is strongly-connected. There is a 
directed path from p to q for every two vertices p
and q.

Condition 2. W is aperiodic.  There is some integer 
N, such that for all k ≥ N, W contains a closed walk 
of length k starting at any given vertex.

26



Damping Factor

The actual World Wide Web Digraph is neither strongly-
connected nor aperiodic. To ensure that the iteration for 
PageRank converges it is necessary to introduce a 
damping factor.

Let n denote the number of nodes of the web digraph W.  
The PageRank R[p] of a web page p is given by: 

𝑅 𝑝 = 1 − 𝑑𝑛 + 𝑑𝑞∈𝑁𝑖𝑛(𝑝) 𝑅[𝑞]𝑑𝑜𝑢𝑡(𝑞) ,
where d is the damping factor between 0 and 1.   

27



Iteration Converges with Damping Factor

The damping factor is equivalent to adding edges for every 

pair of web pages (x,y) giving it a the very small probability 1 − 𝑑𝑛 and slightly reducing the probability of each original 

edge having tail q from the 
1𝑑𝑜𝑢𝑡(𝑞) to 

𝑑𝑑𝑜𝑢𝑡(𝑞) . 

The underlying digraph is now complete, so that it is 

necessarily strongly connected and aperiodic.  

This means the iteration for PageRank will always converge 

when a damping factor is added! 28



Computing PageRank in Practice for 

the World Wide Web

In practice compute PageRank by iterating following 

formula 𝑅𝑖 𝑝 = 1 − 𝑑𝑛 + 𝑑σ𝑞∈𝑁𝑖𝑛(𝑝) 𝑅𝑖−1[𝑞]𝑑𝑜𝑢𝑡(𝑞) , 𝑖 = 1, 2, …
Empirical experiments have shown that acceptable ranking 

functions Ri are achieved in 52 iterations for about 322 

million hyperlinks.

Taking the damping factor d to be between .8 and .9 has 

been found to work well in practice.

29



Random Web Surfer with 

Damping Factor

As before the value of PageRank after i iterations Ri[p] = 

(BT)iR0[p] is the probability that a random surfer will end 

up on page p after i steps. 

The difference is that the surfer can randomly jump from 

a page q to an arbitrary page, but with a very small 

probability, i.e.,  
𝟏 − 𝒅𝒏 . Otherwise, the surfer randomly

goes with equal probability ( 
𝒅𝒅𝒐𝒖𝒕(𝒒) ) to a page in the out-

neighborhood of q, i.e., clicks on a hyperlink on page q.30



What do frogs say that surf the internet?

Reddit reddit.

31



Intro to Counting and Combinatorics

Textbook Reading

Sections 7.1-7.5, pp. 421-442



Traveling Salesperson Problem

• A salesperson's territory includes n cities that must be 

visited on a regular basis. 

• Between each pair of cities, air service is available. 

• The problem is to schedule a sequence of flights that 

visits each city exactly once before returning to the 

starting point. 

• Now suppose there is a weight associated with each 

city representing the time

• Find schedule so that the total time spent flying is 

minimized.  



Solution

Equivalently, the problem is to find a Hamiltonian cycle of 

minimum weight. 

We can enumerate all such cycles as follows.  Starting 

with city 1, there are 𝑛 − 1 ways to choose the second 

city to visit, then, 𝑛 − 2 to choose the third city, 𝑛 − 3 to 

choose the fourth city, and so forth.

It follows that the number of Hamiltonian cycles starting 

and ending with city 1 is𝑛 − 1 × 𝑛 − 2 × 𝑛 − 3 ×⋯× 2 × 1 = (𝑛 − 1)!



There are 6 Hamiltonian cycles with initial vertex 1.  

There are 3 when paired with cycle traversed in reverse. 

Minimum weight Hamiltonian cycle has weight 28.

1

2

3 4

109

7

8

2

12

1

2

3 4

109

7

8

2

12

1

2

3 4

109

7

8

2

12

12341  8+2+12+10 = 32

14321  10+12+2+8 = 32

13241  9+2+7+10 = 28

14321  10+7+2+9 = 28

12431  8+7+12+9 = 36

13421  9+12+7+8 = 36



PSN.  Solve the TSP for sample weighted graph

1

2

3 4

109

7

8

9

12



Counting Hamiltonian Cycles

Brute force algorithm is to enumerate all Hamiltonian cycles to find 
the one of smallest weight.  Starting with vertex 1, there are 

n – 1 choices for second vertex

n – 2 choices for third vertex

⁞

1 choice for nth vertex

Total number of choices altogether is𝑛 − 1 × 𝑛 − 2 ×⋯× 2 × 1 = 𝑛 − 1 !
This is prohibitively large computationally for even relatively small 
n. 

The TSP is at least as hard as the problem of finding a Hamiltonian 
cycle, so it is NP-hard.



Combinatorial Explosion

There is a combinatorial explosion in enumerating 
the number of Hamiltonian cycles.

The Traveling Salesperson Problem (TSP) includes the 
Hamiltonian cycle problem as the special case where 
we assign each edge a weight of 1 if it is in the graph 
and M, where M is very large, i.e., M > n, otherwise.  
Thus, TSP is NP-hard.



Perfect Matchings 
in Weighted Bipartite Graphs

Weighted complete bipartite graph:

G = (V,E) with vertex bipartition 𝑉 = 𝑋 ∪ 𝑌, where
X = {x1, . . . , xn-1 } and Y = {y1, . . . , yn}. 

Each edge xiyj of G is assigned the a real weight ij, 

i, j  {1, . . . , n}. 

8



9

It can be input using the two-dimensional array (matrix):3 3.4 029 10 61.25 0 67
A perfect matching corresponds to a traversal of the matrix.

Sample weighted complete bipartite graph

x1 x3x2

y2y1
y3

3

0

3.4

6

10

1.25

0 67

29



Matchings

A matching is a set of edges that have no 

vertex in common. A perfect matching is 

one that spans the vertices.

The weight of a matching M, denoted by 

(M), is the sum of the weights of its 

edges, i.e.𝜔 𝑀 = σ𝑒∈𝑀𝜔(𝑒).
10



Maximum Weight Perfect Matching

A maximum-weight perfect matching is one 
that maximizes (M). 

There are many natural applications for 
finding a maximum weight perfect matching. 
For example, finding an assignment of workers 
to jobs so that the total effectiveness of the 
workers is optimized.  

11



Maximum Perfect Matching in Sample Graph
x1 x3x2

y2y1
y3

3

0

3.4

6

10

1.25

0 67

29

x1 x3x2

y2y1
y3

3

0

3.4

6

10

1.25

0 67

29

x1 x3x2

y2y1
y3

3

0

3.4

6

10

1.25

0 67

29

x1 x3x2

y2y1
y3

3

0

3.4

6

10

1.25

0 67

29

x1 x3x2

y2y1
y3

3

0

3.4

6

10

1.25

0 67

29

x1 x3x2

y2y1
y3

3

0

3.4

6

10

1.25

0 67

29

3+10+67 =80

3.4+29+67 = 99.4

0+29+0 =29 0+10+1.25= 11.25

3.4+6+1.25 = 10.65

3+6+0 =9

maximum



Brute force very inefficient

A brute-force algorithm that enumerates all n! perfect 
matchings and chooses one of maximum weight is 
hopelessly inefficient.

There is a combinatorial explosion of perfect matchings.

This problem can be solved efficient using an algorithm 
due to Kuhn-Munkres called the Hungarian Algorithm.

13



Intro to Combinatorics and Counting 

A permutation of a set 𝑆 is a bijective mapping from 𝑆
to itself.

For example 𝑆 = {1, 2, 3}
Permutation are:1 2 31 2 3 1 2 31 3 2 1 2 32 1 3 1 2 32 3 1 1 2 33 1 2 1 2 33 2 1
123    132     213    231    312    321



Tree enumerating all permutations of 3 elements

1

3

2

3

1

3

2

1

2

2

1

3

2

1

3

123

231

132

213

312

321



Number of Permutations of n Elements

Proposition. The number of permutations of an 𝑛-element 

set is 𝑛!

Proof using tree enumerating choices:

• The number of nodes on the first level is 𝑛. 

• Each of those 𝑛 nodes has 𝑛 − 1 children, so there are 𝑛(𝑛 − 1) nodes on the second level.

• Each of these 𝑛(𝑛 − 1) nodes on second level has 𝑛 − 2
children, so there are 𝑛(𝑛 − 1)(𝑛 − 2) nodes on the third 

level.

• This continues until we reach the 𝑛th level with 𝑛 × 𝑛 − 1 ×⋯× 1 = 𝑛! (leaf) nodes, one for each 

permutation.



The Multiplication Principle

For a procedure of 𝑚 successive distinct and independent 

steps with𝑛1 outcomes possible for the first step,𝑛2 outcomes possible for the second step,

⁞𝑛𝑚 outcomes possible for the 𝑚𝑡ℎ step, 

the total number of possible outcomes is𝑛1 × 𝑛2 ×⋯× 𝑛𝑚
In the special case of counting permutations of an 𝑛-element set𝑛𝑖 = 𝑛 − 𝑖, 𝑖 = 1, 2,… , 𝑛. 



The Addition Principle 

For a collection of 𝑚 disjoint sets with 𝑛1
elements in the first, 𝑛2 elements in the
second ... , and 𝑛𝑚 elements in the 𝑚𝑡ℎ, the 
number of ways to choose one element from 
the collection is𝑛1 + 𝑛2 +⋯+ 𝑛𝑚.



Mom’s Diner

Main Course Drinks Desert

1. Hamburger I. Fizzy Orange        A. Ice Cream Cone

2. Chicken II. Jug of Tea B. Sunday

3. Hotdog C. Fudge

4. Special

Using the Addition Principle to compute the number of 
ways of choosing one item from the collection, which 
equals total number of items available, is given by

4 + 2 + 3 = 9



I

II

II

II

II

4

3

2

1

I

I

I

A

A

A

A

A

A

B

B

B

B

B

B

B

A

A

C

C

C

C

C

C

C

C

B

Using the Multiplication 

Principle to compute the total 

number of  combinations, which 

equals the number of leaf nodes 

of the tree:

4 × 2 × 3 = 24

Conclusion: There are 9 menu 

items and 24 different meal 

combinations at Mom’s Diner.



Lexicographic order

The set of all 𝑛! permutations can be linearly order as 
follows.  

Given any permutations two 𝜋1 and 𝜋2, let 𝑖 be the first 
positive where they disagree. 

Then 𝜋1 is lexicographically smaller than 𝜋2, written 𝜋1 < 𝜋2, iff 𝜋1(𝑖) < 𝜋2(𝑖). 
Examples:

546123 < 546132, 512364 < 612345, 231564 < 231645



Counting the Complement

• Sometimes it easier to compute the complement.

• For example, consider the problem of computing all permutations of 

the numbers from {1, 2, …, 8}, so that 1 and 2 do not occur together, 
i.e., in consecutive positions.

• To count the number of permutations where they occur together first 

place them in consecutive positions.  There are 14 ways of doing this, 

i.e., in positions 1 and 2, positions 2 and 3, …, position 7 and 8 and 
there are two ways of placing them with 1 first and 2 second or vice 

versa. 

• After 1 and 2 are placed, there are 6! ways of placing the remainding

numbers, yielding a total of 14×6! .

• Thus the number of permutations where 1 and 2 are not placed in 

consecutive positions equals the total number of permutations minus 

the number where they occur together, i.e.,

8! – 14 × 6! = 40320 – 14 × 720 = 30240.



𝒓-permutation of an 𝒏-element set

An 𝒓-permutation of an 𝑛-element set is a linear ordering 
of 𝑟 elements of the set.

Let 𝑃 𝑛, 𝑟 denote the number of all 𝑟-permutations of an 𝑛-element set.

Using the Multiplicative Principle we obtain the following 

formula for 𝑃 𝑛, 𝑟 .

Theorem. 𝑃 𝑛, 𝑟 = 𝑛 𝑛 − 1 ⋯ 𝑛 − 𝑟 + 1 = 𝑛!(𝑛−𝑟)!.



Example

{ 123, 132, 213, 231, 312, 321,

124, 142, 214, 241, 412, 421,

125, 152, 215, 251, 512, 521,

134, 143, 314, 341, 413, 431,

135, 153, 315, 351, 513, 531,

145, 154, 415, 451, 514, 541,

234, 243, 324, 342, 423, 432,

235, 253, 325, 352, 523, 532,

245, 254, 425, 452, 524, 543,

345, 354, 435, 453, 534, 543 }

There are 60 3-permutations of a 5-element set enumerated above.

Using the Multiplicative Principle to compute we obtain:𝑃 5,3 = 5 × 4 × 3 = 5!/2!



Circular Permutations

How many ways are there of seating 𝑛 people at a 
circular table, so that in no two arrangements everyone 
has the same person on the left-hand and right-hand 
sides?  Two seating arrangements are considered the 
same if one could be obtained from the other, by moving 
people in a clockwise direction around the table.

Seat the first person anywhere.

After that there are 𝑛 − 1 ! ways to seat the remaining 
people.



Combinations

An unordered selection of 𝑟 elements from an 𝑛 element 

set is called a combination.

Let 𝐶(𝑛, 𝑟) denote the number of combinations of 𝑟
elements selected from a set of 𝑛 elements, i.e., the 

number of subsets of size 𝑟.  It is also denoted by 
𝑛𝑟 .



Combinations cont’d
{ 123, 132, 213, 231, 312, 321, {1,2,3}

124, 142, 214, 241, 412, 421,      {1,2,4}

125, 152, 215, 251, 512, 521,      {1,2,5}

134, 143, 314, 341, 413, 431,      {1,3,4}

135, 153, 315, 351, 513, 531,      {1,3,5}

145, 154, 415, 451, 514, 541,      {1,4,5}

234, 243, 324, 342, 423, 432,       {2,3,4}

235, 253, 325, 352, 523, 532,       {2,3,5}

245, 254, 425, 452, 524, 543,       {2,4,5}

345, 354, 435, 453, 534, 543 }      {3,4,5}

Note that the 3-permutations of a 5-element set corresponds to ordered 

subsets, where each unordered set is counted 3! = 6. It follows that𝐶 5,3 = 𝑃 5,33! = 606 = 10.



General Formula

𝐶 𝑛, 𝑟 = 𝑃 𝑛,𝑟𝑟! = 𝑛!𝑟! 𝑛−𝑟 ! .



Card Hands

How many 5-card poker hands are there?

How many 13-card bridge hands are there?

The deck contains 52 cards. The number of ways of choosing a 
5 cards is

𝐶 52,5 = 52!5! 48! = 52 × 51 × 50 × 49 × 485! = 2,598,960

Number of 13-card bridge hands is

𝐶 52,13 = 52!13! 39! = 635,013,559,600



PSN.

a) How many permutations of 7 elements are there?

b) How many ways are there of seating 10 people at a 
circular table, so that in no two arrangements 
everyone has the same person on the left-hand 
and right-hand sides?

c) How many 5-permutations of an 8-element set are 
there?

d) How many subsets of size 5 of an 8-element set are 
there?



What did the footwear salesperson do to get the 
deer away from his house?

He shoe'd them away.



Permutations and Combinations

Textbook Reading

Chapter 7, Sections 7.5, 7.6, 7.8, pp. 436-457



Computing the 𝑘th permutation

Note that the first 𝑛!𝑛 = 𝑛 − 1 ! permutations begin with 1, the next 𝑛 − 1 ! permutations 

begin with 2, and so forth.  This can be used to compute the position of the 𝑘th permutation 

in lexicographical order.

Example.  Find the 52nd permutation 𝜋 of 1, 2, 3, 4, 5.

• There are 5! = 120 permutations.  The first 4! = 24 begin with a 1.  The next 24 begin 

with a 2.  It follows that 𝜋 is the 4th permutation to begin with a 3.  

• Repeat this for the 4th permutation of the 4 numbers 1, 2, 4, 5.  The first 3! = 6 

permutations begin with a 1. Therefore, there is a 1 in the second position of 𝜋. 

• Repeat for the 4th permutation of the 3 numbers 2, 4, 5.  The first 2! = 2 permutations 

begin with a 2, the second 2 permutations begin with a 4.  Therefore there is a 4 in the 

third position of 𝜋 and it was the 2nd permutation with this property.  

• Repeat for the 2nd permutation of 2 the numbers 2, 5.  It follows that the last two 

positions of 𝜋 are 5 then 2.   

• Combining all steps the 52nd permutation 𝜋 is  31452 



Generating a Random Permutation

procedure Permute(L[0:n – 1])

Input: L[0:n – 1] (an array of list elements)

Output: L[0:n – 1] (an array of list elements randomly

permuted)

for i = 0 to n – 2 do

j ← Random(i, n – 1) 

interchange(L[i],L[j])

endfor

end Permute

Random(i, j) returns a random number (index) 

between i and j.



Card Hands

How many 5-card poker hands are there?

How many 13-card bridge hands are there?

The deck contains 52 cards. The number of ways of choosing a 
5 cards is

𝐶 52,5 = 52!5! 48! = 52 × 51 × 50 × 49 × 485! = 2,598,960

Number of 13-card bridge hands is

𝐶 52,13 = 52!13! 39! = 635,013,559,600



How many poker hands are there having 
(exactly) one pair?

• # of choices of rank for pair is C(13,1) = 13

• # of choices for suits for pair is C(4,2) = (4×3)/2! = 6

• # of choices of ranks for remaining 3 cards different from rank of 

pair is C(12,3) = (12×11×10)/3! = (12×11×10)/6 = 220

• # of choices of suits for remaining 3 cards is C(4,1) × C(4,1) × C(4,1) 

= 4×4×4 = 64

Number of hands having one pair is

C(13,1) × C(4,2) × C(12,3) × C(4,1) × C(4,1) × C(4,1)

= 13 × 6 × 220 × 4 × 4 × 4 = 1098240



How many Full Houses are there?

A Full House consists of a pair and three of a kind.

• # of choices of rank for pair is C(13,1) = 13

• # of choices of suits for pair is C(4,2) = (4×3)/2! = 6

• # of choices of rank for three of a kind is C(12,1) = 12

• # of choices of suits for three of a kind is C(4,3) = 4

Number of Full House hands is 

C(13,1) × C(4,2) × C(12,1) × C(4,3) = 13 × 6 × 12 × 4 = 3744



PSN.  How many poker hands with 
two pairs (of different ranks) are 
there?



How many bridge hands are there with a void 
in one suit?

A bridge hand consists of 13 cards.  If there is no cards of a 
certain suit, we way that there is a void in that suit.

# of bridge hands not containing a particular suit is C(39,13).

# of suits is C(4,1) = 4

# of bridge hands with a void in one suit is

C(39,13) × C(4,1)



PSN.  How many bridge hands have a 
void in two suits?



Permutations with Repetitions

How many permutations of cincinnati are there?

c is repeated 2 times

i is repeated 3 times

n is repeated 2 times

a occurs 1 time

t occurs 1 time

• cincinnati has a total of 10 letters.  

• So there are 10! permutations.  

• However many of these permutations are identical.

• We must take into account and divide by the amount of 

over counting



Replacing cincinnati with c1i1n1c2i2n2n3a1t1i3 

There are 10! distinct permutations

There are 2! ways of permutation the ci’s
There are 3! ways of permutation the ii’s
There are 3! ways of permutation the ni’s
There are 1! ways of permutation the ai’s
There are 1! ways of permutation the ti’s

Therefore, there are 2!3!3!1!1! ways of permutating all of them.  Thus, we 

are overcounting by a factor of 2!3!3!1!1! when counting the 10! 

permutations of cincinnati

It follow that the number of permutations of cincinnati is 10!2! 3! 3! 1! 1!



An alternative solution

Start with 10 slots, one for each letter of cincinnati. A permutation of 

the 10 letters of cincinnati can be obtained by 

Choose 2 of the 10 slots for c.

Choose 3 of the remaining 8 slots for i. 

Choose 3 of the remaining 5 slots for n. 

Choose 1 of the remaining 2 slots for a. 

Choose 1 of the remaining 1 slots for t. 

Using the Multiplication Principle the number of ways of doing this is

C(10,2) × C(8,3) × C(5,3) × C(2,1) × C(1,1)= 10!2!8! × 8!3!5! × 5!3!2! × 2!1!1! × 1!1!0! = 10!2!3!3!1!1!



Suppose we have 𝑘 symbols distinct symbols, where the 𝑖th symbol has multiplicity 𝑟𝑖 , 𝑖 = 1, … , 𝑘 and the total 
number of symbols with repetition is 𝑛 = 𝑟1 + 𝑟2 +⋯+𝑟𝑘. Let 𝑃 𝑛; 𝑟1, 𝑟2, … , 𝑟𝑘 denote the number of 
permutations with repetitions.

Theorem. 𝑃 𝑛; 𝑟1, 𝑟2, … , 𝑟𝑘 = 𝑛!𝑟1!𝑟2!⋯ 𝑟𝑘! .



Proof

Take 𝑛 slots.

Choose 𝑟1 of the 𝑛 slots for 1st symbol.

Choose 𝑟2 of the remaining 𝑛 − 𝑟1 slots for 2nd symbol.

Choose 𝑟3 of the remaining 𝑛 − 𝑟1 − 𝑟2 slots for 3rd symbol.

⁞
Choose 𝑟𝑘 of the remaining 𝑛 − 𝑟1 −⋯− 𝑟𝑘−1 slots for kth symbol.

Using the Multiplication Principle the number of ways of doing this is𝐶(𝑛, 𝑟1) × 𝐶(𝑛 − 𝑟1, 𝑟2) × ⋯× 𝐶(𝑛 − 𝑟1 −⋯− 𝑟𝑘−1, 𝑟𝑘)= 𝑛!𝑟1!(𝑛−𝑟1)! × (𝑛−𝑟1)!𝑟2!(𝑛−𝑟1−𝑟2)! ×⋯× (𝑛−𝑟1−⋯−𝑟𝑘−1)!𝑟𝑘!0! = 𝑛!𝑟1!𝑟2!⋯ 𝑟𝑘! .



How many permutations of Mississippi are there?

Total number of letters with repeats is 11.

M occurs 1 time

i occurs 4 times

s occurs 4 times

p occurs 2 times

𝑃 11; 1,4,4,2 = 11!1! 4! 4! 2!
What has four eyes by can’t see? 



PSN.  How many permutations of 
engineering are there?



Combinations with Repetitions

Partitions of identical objects into k sets.  

How many ways can we partition 9 smiley faces into 
4 sets?

There are 8 slots between smiley faces.  Check 3 of 
these slots to get partition into 3 sets of identical 
objects, i.e., smiley faces.



3 + 2 + 2 + 2

4 + 2 + 1 + 2

2 + 2 + 3 + 2

1 + 1 + 6 + 1



We are choosing  3 slots from a set of 8 slots. The number of 
ways of doing this is

𝐶 8,3 = 8!3! 5! = 8 × 7 × 63! = 56
Note that this can be viewed as the number of integer 
solutions to 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 9,𝑥𝑖 ≥ 1, 𝑖 = 1, 2, 3, 4.



Theorem. The number of integer solution to the equation𝑥1 + 𝑥2 +⋯+ 𝑥𝑟 = 𝑛,𝑥𝑖 ≥ 1, 𝑖 = 1,… , 𝑟
is given by 𝐶(𝑛 − 1, 𝑟 − 1).



Proof

• Take 𝑛 smiley faces with a slot between adjacent smiley 

faces. 

• Then there are 𝑛 − 1 slots. 

• Check 𝑟 − 1 of these slots. 

• This partitions the smiley faces into r sets, giving a solution 

to the equation in the Theorem.  

• The number of ways of choosing 𝑟 − 1 slots from 𝑛 − 1 to 

put the check in is 𝐶(𝑛 − 1, 𝑟 − 1).   Q.E.D.



Corollary. The number of integer solution to the equation𝑥1 + 𝑥2 +⋯+ 𝑥𝑟 = 𝑛,𝑥𝑖 ≥ 0, 𝑖 = 1,… , 𝑟
Is given by 𝐶(𝑛 + 𝑟 − 1, 𝑟 − 1).



Proof of Corollary

Let 𝑦𝑖 = 𝑥𝑖 + 1, 𝑖 = 1,… , 𝑟.

Then, we have𝑦1 + 𝑦2 +⋯+ 𝑦𝑟 = 𝑛 + 𝑟 − 1,𝑦𝑖 ≥ 1, 𝑖 = 1,… , 𝑟
By the Theorem the number of solutions to the above is𝐶(𝑛 + 𝑟 − 1, 𝑟 − 1).
But this is the same as the number of solutions to the 
equation with the 𝑥𝑖’s given in the Corollary. 



How does a farmer count his cows?

With a Cowculator.



Combinatorial Identities, 
Binomial Theorem

Textbook Reading:

Chapter 7. Sections 7.5, pp. 457-465



Combinatorial Identities𝐶 𝑛, 𝑘 = 𝐶 𝑛, 𝑛 − 𝑘
Newton’s Identity𝐶 𝑛, 𝑘 × 𝐶 𝑘,𝑚 = 𝐶 𝑛,𝑚 × 𝐶(𝑛 −𝑚, 𝑘 − 𝑚)
Pascal’s Identity𝐶 𝑛, 𝑘 = 𝐶 𝑛 − 1, 𝑘 + 𝐶(𝑛 − 1, 𝑘 − 1)



Proof of first identity

𝐶 𝑛, 𝑘 = 𝑛!𝑘! 𝑛 − 𝑘 ! = 𝑛!𝑛 − 𝑘 ! 𝑘! = 𝐶 𝑛, 𝑛 − 𝑘



Combinatorial Proof of Newton’s Identity𝐶 𝑛, 𝑘 × 𝐶 𝑘,𝑚 = 𝐶 𝑛,𝑚 × 𝐶(𝑛 − 𝑚, 𝑘 − 𝑚)
Consider the 𝑘-subsets of an 𝑛-element set where 𝑚
elements in each 𝑘-subset are colored red. Using the 
Multiplication Principle this equals 𝐶 𝑛, 𝑘 × 𝐶 𝑘,𝑚 .

Another way of counting is to first take all the 𝑚-subsets of 
the 𝑛-element set, color them red, and add to each 𝑚-subset 𝑘 −𝑚 elements from the remaining 𝑛 −𝑚 elements to 
extend to a 𝑘-subset.  Using the Multiplication Principle the 
number of ways of doing this is𝐶 𝑛,𝑚 × 𝐶(𝑛 −𝑚, 𝑘 − 𝑚)



Algebraic Proof of Newton’s Identity𝐶 𝑛, 𝑘 × 𝐶 𝑘,𝑚 = 𝐶 𝑛,𝑚 × 𝐶(𝑛 − 𝑚, 𝑘 − 𝑚)𝐶 𝑛, 𝑘 × 𝐶 𝑘,𝑚= 𝑛!𝑘! 𝑛−𝑘 ! × 𝑘!𝑚!(𝑘−𝑚)!= 𝑛!𝑘! 𝑛−𝑘 ! × 𝑘! 𝑛−𝑚 !𝑚! 𝑘−𝑚 ! 𝑛−𝑚 != 𝑛!𝑚! 𝑛−𝑚 ! × 𝑛−𝑚 !𝑘−𝑚 !( 𝑛−𝑚 − 𝑘−𝑚 )!= 𝐶 𝑛,𝑚 × 𝐶(𝑛 −𝑚, 𝑘 −𝑚)



Algebraic  Proof of Pascal's Identity𝐶 𝑛, 𝑘 = 𝐶 𝑛 − 1, 𝑘 + 𝐶(𝑛 − 1, 𝑘 − 1)𝐶 𝑛 − 1, 𝑘 + 𝐶(𝑛 − 1, 𝑘 − 1)
= (𝑛 − 1)!𝑘! 𝑛 − 1 − 𝑘 !+ (𝑛 − 1)!(𝑘 − 1)! 𝑛 − 𝑘 !
= (𝑛 − 1)! (𝑛 − 𝑘)𝑘! 𝑛 − 𝑘 ! + (𝑛 − 1)! 𝑘𝑘! 𝑛 − 𝑘 != (𝑛−1)!(𝑛−𝑘+𝑘)𝑘! 𝑛−𝑘 ! = 𝑛!𝑘! 𝑛−𝑘 ! = 𝐶(𝑛, 𝑘)



PSN. Give a combinatorial proof of Pascal’s Identity𝐶 𝑛, 𝑘 = 𝐶 𝑛 − 1, 𝑘 + 𝐶(𝑛 − 1, 𝑘 − 1)



Binomial Theorem

(𝑥 + 𝑦)𝑛 = 𝑘=0𝑛 𝐶 𝑛, 𝑘 𝑥𝑛−𝑘𝑦𝑘
The Binomial Theorem was first discovered 

by Sir Isaac Newton.

𝐶 𝑛, 𝑘 is sometimes written as 
𝑛𝑘 and sometimes 

referred to as a binomial coefficient.



Proof for 𝑛 = 4𝑥 + 𝑦 𝑥 + 𝑦 𝑥 + 𝑦 𝑥 + 𝑦
Using the distributive law the 

coefficient of 𝑥4 is obtained by choosing 𝑥 in all terms: 𝐶(4,4) ways

coefficient of 𝑥3𝑦 is obtained by choosing 𝑥 is 3 terms: 𝐶(4,3) ways

coefficient of 𝑥2𝑦2is obtained by choosing 𝑥 is 2 terms: 𝐶(4,2) ways

coefficient of 𝑥𝑦3is obtained by choosing 𝑥 is 1 term: 𝐶(4,1) ways

coefficient of 𝑦4 is obtained by choosing 𝑥 is 0 terms: 𝐶(4,0) ways

Combining we have(𝑥 + 𝑦)4= 𝑥 + 𝑦 𝑥 + 𝑦 𝑥 + 𝑦 𝑥 + 𝑦= 𝐶 4,4 𝑥4 + 𝐶 4,3 𝑥3𝑦 + 𝐶 4,2 𝑥2𝑦2 + 𝐶 4,1 𝑥𝑦3 + 𝐶(4,0)𝑦4



Proof for general 𝑛𝑥 + 𝑦 𝑥 + 𝑦 ⋯ 𝑥 + 𝑦 𝑥 + 𝑦
Using the distributive law the 

coefficient of 𝑥𝑛 is obtained by choosing 𝑥 in all terms: 𝐶(𝑛, 𝑛) ways

coefficient of 𝑥𝑛−1𝑦 is obtained by choosing 𝑥 is 3 terms: 𝐶(𝑛, 𝑛 − 1) ways

coefficient of 𝑥𝑛−2𝑦2is obtained by choosing 𝑥 is 2 terms: 𝐶(𝑛, 𝑛 − 2) ways

⁞

coefficient of 𝑥𝑦𝑛−1is obtained by choosing 𝑥 is 1 term: 𝐶(𝑛, 1)ways

coefficient of 𝑦𝑛 is obtained by choosing 𝑥 is 0 terms: 𝐶(𝑛, 0)ways

Combining we have(𝑥 + 𝑦)𝑛 = 𝑥 + 𝑦 𝑥 + 𝑦 ⋯ 𝑥 + 𝑦 𝑥 + 𝑦= 𝐶 𝑛, 𝑛 𝑥𝑛 + 𝐶 𝑛, 𝑛 − 1 𝑥𝑛−1𝑦 + 𝐶 𝑛, 𝑛 − 2 𝑥𝑛−2𝑦2 + 𝐶 𝑛, 1 𝑥𝑦𝑛−1 + 𝐶(𝑛, 0)𝑦𝑛= σ𝑖=0𝑛 𝐶 𝑛, 𝑖 𝑥𝑛−𝑖𝑦𝑖



Pascal’s Triangle



Sum of Row in Pascal’s Triangle
Show that the 𝑛th row of Pascal’s triangle sums to 2𝑛. 

We need to show that 𝐶 𝑛, 0 + 𝐶 𝑛, 1 +⋯+ 𝐶 𝑛, 𝑛 = 2𝑛
By the binomial theorem

(1 + 1)𝑛 = 𝑖=0𝑛 𝐶 𝑛, 𝑖 1𝑛−𝑖1𝑖 =𝑖=0𝑛 𝐶 𝑛, 𝑖



Combinatorial Proof

Let 𝑆 = {1,2, … , 𝑛}.  The cardinality of the power set is 

given by 𝑃 𝑆 = 2𝑛
Let 𝑆𝑘 denote the 𝑘-subsets, 𝑘 = 0,1, … , 𝑛. Clearly,𝑃 𝑆 = 𝑆0 + 𝑆1 +⋯+ |𝑆𝑛|

Then |𝑆𝑘| = 𝐶(𝑛, 𝑘)
Substituting we obtain2𝑛 = 𝑃 𝑆 = 𝑆0 + 𝑆1 +⋯+ |𝑆𝑛|= 𝐶 𝑛, 0 + 𝐶 𝑛, 1 + ⋯+ 𝐶(𝑛, 𝑛)



PSN

Show that𝐶 𝑛, 0 − 𝐶 𝑛, 1 + ⋯+ (−1)𝑛𝐶 𝑛, 𝑛 = 0



Multinomial Coefficient

Recall that if we 𝑘 symbols distinct symbols, where the 𝑖th symbol has 

multiplicity 𝑟𝑖 , 𝑖 = 1,… , 𝑘 and the total number of symbols with 

repetition is 𝑛 = 𝑟1 + 𝑟2 +⋯+ 𝑟𝑘, then the number of permutations 

with repetitions is given by

𝑃 𝑛; 𝑟1, 𝑟2, … , 𝑟𝑘 = 𝑛!𝑟1!𝑟2!⋯ 𝑟𝑘! .

This can be  referred to a multinomial coefficient and denoted by 𝑛𝑟1 𝑟2 ⋯ 𝑟𝑘



Multinomial Theorem 

(𝑥1 + 𝑥2 +⋯𝑥𝑘)𝑛= 𝑟1+𝑟2+⋯𝑟𝑘=𝑛
𝑛!𝑟1 𝑟2 ⋯ 𝑟𝑘 𝑥1𝑟1 𝑥2𝑟2⋯𝑥𝑘𝑟𝑘



Why didn't Isaac Newton dodge the apple?

He didn't understand the gravity of the situation.



Proof of Principle of Inclusion-Exclusion 
and Counting Derangements

Textbook Reading: 

Section 7.5, pp. 445-446
1



For two arbitrary sets A and B

|||||||| BABABA −+=

A B

Principle of Inclusion-Exclusion (2 sets)



1 12

𝐴 + |𝐵|
1 11

𝐴 + 𝐵 − |𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|

Proof of Principle of Inclusion-Exclusion (2 sets)



|A ∪ B ∪ C| = |A| + |B| + |C|

– |A ∩ B| – |A ∩ C| – |B ∩ C|

+ |A ∩ B ∩ C|

A B

C

Principle of Inclusion-Exclusion (3 sets)



Proof of Principle of Inclusion-Exclusion (3 sets)

A
B

C

1 2

2

1

1

2
3

|A| + |B| + |C| |A| + |B| + |C| – |A ∩ B| – |A ∩ C| – |B ∩ C|

A
B

C

1 1

1

1

1

1
0

A
B

C

1 1

1

1

1

1
1|A| + |B| + |C|

– |A ∩ B| – |A ∩ C| – |B ∩ C|

+ |A ∩ B ∩ C|

|A ∪ B ∪ C| 



|A ∪ B ∪ C ∪ D| = |A| + |B| + |C| + |D|

– |A ∩ B| – |A ∩ C| – |A ∩ D| – |B ∩ C| – |B ∩ D| – |C ∩ D|

+ |A ∩ B ∩ C| + |A ∩ B ∩ D| + |A ∩ C ∩ D| + |B ∩ C ∩ D|

– |A ∩ B ∩ C ∩ D |

Principle of Inclusion-Exclusion (4 sets)

A B

C D



A B

C D

1 1

11

3

3

22

3

2

2

3

4

|A| + |B| + |C| + |D|

A B

C D

1 1

11

0

0

11

0

1

1

0

-2

|A| + |B| + |C| + |D| 
– |A ∩ B| – |A ∩ C| – |A ∩ D| – |B ∩ C| – |B ∩ D| – |C ∩ D|

A B

C D

1 1

11

1

1
11

1
1

1
1

2

|A| + |B| + |C| + |D| 
– |A ∩ B| – |A ∩ C| – |A ∩ D| – |B ∩ C| – |B ∩ D| – |C ∩ D|

+ |A ∩ B ∩ C| + |A ∩ B ∩ D| + |A ∩ C ∩ D| + |B ∩ C ∩ D|

A B

C D

1 1

11

1

1
11

1
1

1

1
1

|A| + |B| + |C| + |D|

– |A ∩ B| – |A ∩ C| – |A ∩ D| – |B ∩ C| – |B ∩ D| – |C ∩ D|

+ |A ∩ B ∩ C| + |A ∩ B ∩ D| + |A ∩ C ∩ D| + |B ∩ C ∩ D|

– |A ∩ B ∩ C ∩ D | = |A ∪ B ∪ C ∪ D| 

Proof of Principle of Inclusion-Exclusion (4 sets)



Principle of Inclusion-Exclusion (n sets)

What is the inclusion-exclusion formula for the union of n sets?



sum of sizes of all single sets

– sum of sizes of all 2-set intersections

+ sum of sizes of all 3-set intersections

– sum of sizes of all 4-set intersections

⁞
+ (–1)n+1 × sum of sizes of intersections of all n sets

1 2 nA A A   =

 

1

1,2, ,1

( 1)
n

k

i

S nk i S

S k

A
+

= 
=

= − 

Principle of Inclusion-Exclusion (n sets)



Proof of Principle of Inclusion-Exclusion (n sets)

sum of sizes of all single sets
– sum of sizes of all 2-set intersections
+ sum of sizes of all 3-set intersections
– sum of sizes of all 4-set intersections
…
+ (–1)n+1 × sum of sizes of intersections of all n sets

|A1 ∪A2 ∪A3 ∪ … ∪An|

To prove correctness we need to show that every element is counted exactly once.

Consider an element which belongs to exactly k sets, say A1, A2, A3, …, Ak.

In the formula, such an element is counted the following number of times:

It remains to show this sum equals 1.

𝐶 𝑘, 1 − 𝐶 𝑘, 2 + 𝐶 𝑘, 3 − 𝐶 𝑘, 4 + ⋯+ −1 𝑘+1𝐶 𝑘, 𝑘



Proof cont’d
By the Binomial Theorem

0 = (1 − 1)𝑘 = 𝑖=0𝑘 𝐶 𝑘, 𝑖 1𝑘−𝑖(−1)𝑖 =𝑖=0𝑘 (−1)𝑖𝐶 𝑘, 𝑖
= 𝐶 𝑘, 0 − 𝐶 𝑘, 1 + 𝐶 𝑘, 2 − 𝐶 𝑘, 3 +⋯+ (−1)𝑘𝐶(𝑘, 𝑘)

Using fact that 𝐶 𝑘, 0 = 1, we have

⇒ 𝐶 𝑘, 1 − 𝐶 𝑘, 2 + 𝐶 𝑘, 3 − ⋯+ −1 𝑘+1𝐶 𝑘, 𝑘 = 1
This completes the proof of the Principle of Inclusion-Exclusion.



Derangements

A fixed point of a permutation 𝜋 is an index 𝑖 such 

that 𝜋 𝑖 = 𝑖.  
A derangement is a permutation with no fixed points. 

PSN. 

a) Compute all derangements for 𝑛 = 2, 3, 4.

b) Compute the fraction of permutations that are 

derangements for 𝑛 = 2, 3, 4.



Computing number of derangements for n = 4

• We will use complement and the Principle of Inclusion-

exclusion.

• Let 𝑃4 denote the set of all permutations on 𝑛 = 4
elements

• Let 𝐷4 denote the set of all derangements on 𝑛 = 4
elements

• Let 𝑑4 denote the set of all derangements on 𝑛 = 4
elements

• Let 𝐴 denote the set of all permutations from 𝑃4 that have 

a fixed point in at least one location.

• Then 𝑑4 = |𝐷4 = |𝑃4 − 𝐴 = 4! − 𝐴



Computing number of derangements for n = 4

• Let  𝐴𝑖 denote the number of permutations on 4 elements 

where there is a fixed point in position 𝑖, 𝑖 = 1,2,3,4.

• Then 𝐴 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4
• So using result from previous slide we have 𝑑4 = 4! − 𝐴 = 4! − |𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4|



Computing number of derangements for n = 4

Placing 𝑖 in position 𝑖 there are 3! ways of placing the 

remaining elements, so |𝐴𝑖| = 3!
Placing 𝑖 in position 𝑖 and 𝑗 in position 𝑗 there are 2! ways of 

placing the remaining elements, so |𝐴𝑖 ∩ 𝐴𝑗| = 2!
Placing 𝑖 in position 𝑖, 𝑗 in position 𝑗, and 𝑘 in position 𝑘 there 

are 1! ways of placing the remaining elements, so |𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘| = 1!
Finally, 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ 𝐴4 = 0!



Applying Principle of Inclusion-Exclusion𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4= 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4– 𝐴1 ∩ 𝐴2 – 𝐴1 ∩ 𝐴3 – 𝐴1 ∩ 𝐴4 – 𝐴2 ∩ 𝐴3 – 𝐴2 ∩ 𝐴4 – 𝐴3 ∩ 𝐴4+ 𝐴1 ∩ 𝐴2 ∩ 𝐴3 + 𝐴1 ∩ 𝐴2 ∩ 𝐴4 + 𝐴1 ∩ 𝐴3 ∩ 𝐴4 + 𝐴2 ∩ 𝐴3 ∩ 𝐴4– |𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ 𝐴4|= 𝐶 4,1 3! − 𝐶 4,2 2! + 𝐶 4,3 1! − 𝐶 4,4 0!
Using result from previous slide and substituting, we have𝑑4 = 4! − 𝐴 = 4! − |𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4|= 4! − 𝐶 4,1 3! + 𝐶 4,2 2! − 𝐶 4,3 1! + 𝐶 4,4 0!

= 4! − 4!1!3!3! + 4!2!2!2! − 4!3!1!1! + 4!4!0!0!
= 4! − 4!1!+ 4!2! − 4!3!+ 4!4! = 4! (1 − 11!+ 12! − 13!+ 14!)



Thus, 𝑑44! = 1 − 11! + 12! − 13! + 14! = .375
This is the same result we obtained on the previous slide 
where we used brute force, i.e., we enumerated all the 
permutations and derangements of a 4-element set.

Can you conjecture what the formula is for a general n?



Computing number of derangements

• Let  𝐴𝑖 denote the number of permutations on 𝑛 elements 

where there is a fixed point in position 𝑖, 𝑖 = 1,2, … , 𝑛.

• Then 𝐴 = 𝐴1 ∪ 𝐴2 ∪⋯∪ 𝐴𝑛
• So using result from previous slide we have 𝑑𝑛 = 𝑛! − 𝐴 = 𝑛! − |𝐴1 ∪ 𝐴2 ∪⋯∪ 𝐴𝑛|



Cardinalities of intersection of sets 𝐴𝑖
Placing 𝑖 in position 𝑖 there are 𝑛 − 1 ! ways of placing the 

remaining elements, so |𝐴𝑖| = 𝑛 − 1 !
Placing 𝑖 position 𝑖 and 𝑗 in position 𝑗 there are 𝑛 − 2 ! ways 

of placing the remaining elements, so |𝐴𝑖 ∩ 𝐴𝑗| = 𝑛 − 2 !
Placing 𝑖 position 𝑖, 𝑗 in position 𝑗, and 𝑘 in position 𝑘 there are 𝑛 − 3 ! ways of placing the remaining elements, so |𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘| = 𝑛 − 3 !

⁞𝐴1 ∩ 𝐴2 ∩⋯∩ 𝐴𝑛 = 0!



Applying Principle of Inclusion-Exclusion𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪⋯∪ 𝐴𝑛= 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4– 𝐴1 ∩ 𝐴2 – 𝐴1 ∩ 𝐴3 – 𝐴1 ∩ 𝐴4 – 𝐴2 ∩ 𝐴3 – 𝐴2 ∩ 𝐴4 – 𝐴3 ∩ 𝐴4 −⋯+ 𝐴1 ∩ 𝐴2 ∩ 𝐴3 + 𝐴1 ∩ 𝐴2 ∩ 𝐴4 + 𝐴1 ∩ 𝐴3 ∩ 𝐴4 + 𝐴2 ∩ 𝐴3 ∩ 𝐴4 +⋯⁞+(−1)𝑛 |𝐴1 ∩ 𝐴2 ∩ ⋯∩ 𝐴𝑛|= 𝐶 𝑛, 1 (𝑛 − 1)! − 𝐶 𝑛, 2 𝑛 − 2 ! + 𝐶 𝑛, 3 𝑛 − 3 ! − ⋯+(−1)𝑛 𝐶 𝑛, 𝑛 0!
Using result from previous slide and substituting, we have𝑑𝑛 = 𝑛! − 𝐴 = 𝑛! − |𝐴1 ∪ 𝐴2 ∪⋯∪ 𝐴𝑛|= 𝑛! − 𝐶 𝑛, 1 𝑛 − 1 ! + 𝐶 𝑛, 2 𝑛 − 2 ! − 𝐶 𝑛, 3 𝑛 − 3 ! + ⋯+(−1)𝑛 𝐶 4,4 0!

= 𝑛! − 𝑛!1! 𝑛−1 ! 𝑛 − 1 ! + 𝑛!2! 𝑛−2 ! 𝑛 − 2 ! − 𝑛!3! 𝑛−3 ! 𝑛 − 3 ! + ⋯+(−1)𝑛 𝑛!𝑛!0!0!= 𝑛! − 𝑛!1! + 𝑛!2! − 𝑛!3! +⋯+(−1)𝑛 𝑛!𝑛! = 𝑛! (1 − 11!+ 12! − 13!+⋯+(−1)𝑛 1𝑛!)



Conclusion

Thus, 𝑑𝑛𝑛! = 1 − 11! + 12! − 13! + ⋯+(−1)𝑛 1𝑛!
Can you conjecture what the limit equals as 𝑛 → ∞?



Probability of choosing a derangementlim𝑛→∞ 𝑑𝑛𝑛! = lim𝑛→∞(1 − 11! + 12! − 13! +⋯+(−1)𝑛 1𝑛!)= 𝑒−1≈ .367879441

Thus, for large 𝑛, the fraction of permutations that 
are derangements, or equivalently the probability of 
choosing a permutation that it is a derangement, is 

about  
1𝑒 ≈ .367879441



Probability Theory

Textbook Reading:

Chapter 8, pp.475-498



Applications of Probability Theory

Statistics 

Inferences on statistics on data collected 

are made under the framework 
of probability theory.



Applications of Probability Theory, cont’d

Probabilistic Analysis of an Algorithm 

The expected performance of an algorithm 
for inputs of a given size is referred to as 
the average complexity and is an important 
measure of computing time. 



Applications of Probability Theory, cont’d
Probabilistic Algorithms

• Most algorithms are  deterministic. A deterministic algorithm 

performs exactly the same for every run with the same input

• On the other hand, a probabilistic algorithm contains steps 

that make random choices by invoking a random (or 

pseudorandom) number generator. 

• Thus, they are subject to the laws of chance.  In particular, a 

probabilistic algorithm can perform differently for two runs 

with the same input.

• The advantage of using a probabilistic algorithm is to obtained 

better expected computing time in the worst case.



Discrete Sample Space

• A discrete sample space S is a nonempty 

set that has only a finite or countably 

infinite number of elements.

• An element of S is called an outcome.

• A subset of S is called an event.



Probability Density Function

A probability density function p on a discrete sample space S is 

defined by

For each 𝑠𝜖𝑆, 0 ≤ 𝑝(𝑠) ≤ 1
and 𝑠∈𝑆 𝑝 𝑠 = 1
These two conditions determine the two axioms of probability 

theory. 

A probability density function is also called a probability mass 

function.



Probability of an outcome and event

• The value p(s) of the probability density function of 

outcome s is the probability of s.

• Let E be an event in a sample space S with a 

probability density function p(s). 

• The probability P(E) of event E is the sum of the 

probabilities over all the outcomes E , i.e., 𝑃 𝐸 =𝑠∈𝐸 𝑝(𝑠)



Example: Rolling a die𝑆 = {1,2,3,4,5,6}
Outcomes are 1, 2, 3, 4, 5, 6.  If die is fair𝑝 𝑖 = 16 , 𝑖 = 1, 2, … , 6.

Let 𝐸 be the event value is odd, i.e.,𝐸 = {1,3,5}𝑃 𝐸 = 𝑝 1 + 𝑝 3 + 𝑝 5 = 16+ 16+ 16 = 12.



Example: Rolling 2 dice𝑆 = { 𝑖, 𝑗 ∶ 𝑖, 𝑗 = 1, 2, … , 6}
Outcomes are 𝑖, 𝑗 ∶ 𝑖, 𝑗 = 1, 2, … , 6.  If both dice are fair𝑃 (𝑖, 𝑗) = 136 , 𝑖, 𝑗 = 1, 2, … , 6.

Let 𝐸 be the event sum of dice is seven, i.e.,𝐸 = { 1,6 , 2,5 , 3,4 , (4,3)(5,2)(6,1)}𝑃 𝐸 = 𝑝 1,6 + 𝑝 2,5 + 𝑝 3,4 + 𝑝 4,3 + 𝑝 5,2 + 𝑝(6,1)= 136 + 136 + 136 + 136 + 136 + 136 = 16.



Cartesian Product of Sample Spaces

Let 𝑆1, 𝑆2, … , 𝑆𝑛 be respectively. Then the sample 

space 𝑆 that is their cartesian product is given by𝑆 = 𝑆1 × 𝑆2 ×⋯× 𝑆𝑛= {(𝑠1, 𝑠2, …, 𝑠𝑛): 𝑠𝑖 ∈ 𝑆𝑖 , 𝑖 = 1, 2, … , 𝑛}
The probability of an outcome 𝑠 = (𝑠1, 𝑠2, …, 𝑠𝑛)
is given by𝑝 𝑠 = 𝑝(𝑠1) × 𝑝 𝑠2 ×⋯× 𝑝(𝑠𝑛)



Example with two dice𝑆 = {1,2,3,4,5,6}𝑆 × 𝑆 = 𝑖, 𝑗 ∶ 𝑖, 𝑗 = 1, 2, … , 6
𝑝 𝑖, 𝑗 = 𝑝 𝑖 × 𝑝 𝑗 = 16 × 16 = 136.



Probability of Events in Cartesian 
Product of Sample Spaces

Let 𝐸1, 𝐸2, … , 𝐸𝑛 be events in sample 

spaces 𝑆1, 𝑆2, … , 𝑆𝑛, respectively. Then,𝑃(𝐸1 × 𝐸2 ×⋯× 𝐸𝑛)= 𝑃(𝐸1)𝑃(𝐸2)…𝑃(𝐸𝑛)



The Frequency Interpretation of Probability

• The frequency interpretation of probability 

is to take the quantity P(E) as an estimate 

for the proportion of times that event E will 

occur when an experiment is repeated over 

and over. 

• The reasonableness of the estimate 

depends on how well the probability 

density function estimates the frequencies 

of the outcomes



Uniform Probability Density Function

A probability density function is uniform if every 

outcome has the same probability.  

The common probability is 
1𝑆 . Thus,

𝑝 𝑠 = 1𝑆 , ∀𝑠 ∈ 𝑆
The probability of an event 𝐸 is given by𝑃 𝐸 =𝑠∈𝐸 𝑝(𝑠) =𝑠∈𝐸 1𝑆 = 𝐸𝑆



PSN. Drawing from a Deck of Cards.

Assuming a uniform probability density 

function on the standard deck of cards.

a) Determine the probability of drawing an 

Ace.

b) Determine the probability of drawing a 

face card, i.e., Jack, Queen, or King.



Poker Hands

The sample space 𝑆 is the set of all 5-card hands

𝑆 = 𝐶 52,5 = 52!5! 48! = 52 × 51 × 50 × 49 × 485! = 2,598,960

It follows that for 𝑠 ∈ 𝑆,𝑝 𝑠 = 1
2,598,960 .

Let H an event, i.e., a set of hands, such as a pair, two pair, full 

house, etc. For a uniform probability density function.  Then,

𝑃 𝐻 = 𝐻𝑆 = 𝐻𝐶 52,5



Probability of poker hands  

The probability of a hand with one pair is 𝐶 13,1 × 𝐶 4,2 × 𝐶 12,3 × 𝐶 4,1 × 𝐶 4,1 × 𝐶 4,1𝐶 52,5
The probability of a hand with two pairs is𝐶 13,2 × 𝐶 4,2 × 𝐶 4,2 × 𝐶 11,1 × 𝐶 4,1𝐶 52,5
The probability of a full house is

C(13,1) × C(4,2) × C(12,1) × C(4,3)𝐶 52,5



Disjoint events

Let 𝐸1, 𝐸2, … , 𝐸𝑛 be pairwise disjoint events. Then,𝑃(𝐸1 ∪ 𝐸2 ∪⋯∪ 𝐸𝑛) = 𝑃(𝐸1) + 𝑃(𝐸2) + ⋯+ 𝑃(𝐸𝑛)



Properties of probability of events

Let E and F be event in a sample space S and let ത𝐹
denote the complement of F, i.e., ത𝐹 = 𝑆 − 𝐹
a) 𝐸 ⊆ 𝐹 ⇒ 𝑃 𝐸 ≤ 𝑃 𝐹
b) 𝑃 𝐸 ∪ 𝐹 = 𝑃 𝐸 + 𝑃 𝐹 − 𝑃 𝐸 ∩ 𝐹
c) 𝑃 𝐸 = 𝑃 𝐸 ∩ 𝐹 + 𝑃(𝐸 ∩ ത𝐹)
The last property can be generalized to n events 𝐹1, 𝐹2, … , 𝐹𝑛 partition 𝑆:𝑃 𝐸 = 𝑃 𝐸 ∩ 𝐹1 + 𝑃 𝐸 ∩ 𝐹2 +⋯+ 𝑃 𝐸 ∩ 𝐹𝑛



PSN. What is the probability that a card 
drawn at random from a 52-card deck 
will be an King or a heart?



Probability of the complement

Let 𝐸 be event in a sample space S and let ത𝐸
denote the complement of F, i.e., ത𝐸 = 𝑆 − 𝐹. 

Then, 𝑃 𝐸 = 1 − 𝑃( ത𝐸)



The Birthday Problem

What is the probability that in a group of 

n people, at least two have the same 

birthday? 

Leap years are ignored, and all 

combinations of birthdays are assumed 

to be equally likely.



Solution to the Birthday Problem

• Represent the birthdays of the group by an n-tuple with 

components that are integers in the range 1 through 365. 

• Take the sample space 𝑆 to the 365𝑛 possible 𝑛-tuples, and 

assume the

• Assume a uniform probability density on 𝑆. 

• Let E be the event that at least two people have the same 

birthday.

• Then ത𝐸 is the event that no two people have the same 

birthday

• Then 𝑃 𝐸 = 1 − 𝑃( ത𝐸)



Computing ത𝐸
• ത𝐸 consists of all possible 𝑛-tuples of distinct birthdays

• The number of elements in ത𝐸 can be counted as follows:

➢ the first person has any of 365 birthdays

➢ the second has any of the 364 remaining possibilities

⁞

➢ the 𝑛th person has any of the remaining 365 – 𝑛 + 1
possibilities

• Thus, ത𝐸 = 365 × 364 ×⋯× (365 − 𝑛 + 1)



Computing 𝑃 𝐸
Since the probability density function is uniform𝑃 ത𝐸 = ത𝐸𝑆 = 365×364×⋯×(365−𝑛+1)365𝑛 .

Therefore, we have𝑃 𝐸 = 1 − 𝑃 ത𝐸 = 1 − 365×364×⋯×(365−𝑛+1)365𝑛



Interesting Conclusion

Using a calculator and the identity𝑃 ത𝐸 = 365 × 364 ×⋯× (365 − 𝑛 + 1)365𝑛= 365365 × 364365 ×⋯× 365 − 𝑛 + 1365
it is easy to compute that for 𝑛 ≥ 23, 𝑃 ത𝐸 < 0.5 and𝑃 𝐸 > 0.5.
In other words, if at least 23 students are in a class, then 

the chances are greater than 50% that some two or 

more of them have the same birthday.



Why do dice always prefer to be in twos?

Because it's a pair a' dice.



Discrete Probability: Bernoulli Process, 

Conditional Probability, Random Variable

Textbook Reading:

Chapter 8, pp. 498-521



Bernoulli Process

A Bernoulli trial process or simply a Bernoulli process is a 

sequence of repetitions, called trials, of an experiment with a 

two-element sample space. 

It is assumed that the trials have no influence on one another. 

The two possible outcomes of a trial need not be equally likely.



n-trial Bernoulli Process

In an 𝑛-trial Bernoulli process the trial is repeated 𝑛
times with probability 𝑝 of success on each trial. The 

probability of failure is 𝑞 = 1 − 𝑝.

For example a trial could be flipping a coin. If success is 

a head (and failure at tail) then𝑝 = 𝑞 = 12 .
Another example is rolling a die. If the die is fair and 

success is a 5 or 6 (and failure a 1, 2, 3 or 4) then𝑝 = 26 = 13 and 𝑞 = 23 .



Probability of k successes in a Bernoulli Process

• Let 𝑏 𝑛; 𝑘, 𝑝 denote the probability of exactly 𝑘 successes in an 𝑛-trial Bernoulli process with probability 𝑝 of success on each 

trial. 

• The number of ways of choosing 𝑘 trials (from trials 1, 2, … , 𝑛) 

to be successes is 𝐶(𝑛, 𝑘)
• The probability that a given set of 𝑘 trials are successes and the 

remaining 𝑛 − 𝑘 are failures is𝑝𝑘𝑞𝑛−𝑘
• It follows that 𝑏 𝑛; 𝑘, 𝑝 = 𝐶(𝑛, 𝑘)𝑝𝑘𝑞𝑛−𝑘



Sample Space associated with 

Bernoulli Process

Let 𝑆 = {𝑠1,…, 𝑠𝑛} where outcome 𝑠𝑖 means exactly 𝑖
successes.  Then, 𝑝 𝑠𝑖 = 𝑏 𝑛; 𝑖, 𝑝 = 𝐶(𝑛, 𝑖)𝑝𝑖𝑞𝑛−𝑖
determines a probability density function on 𝑆.

Proof. Applying the Binomial Theorem we obtain

𝑖=1𝑛 𝑝 𝑠𝑖 =𝑖=1𝑛 𝐶 𝑛, 𝑖 𝑝𝑖𝑞𝑛−𝑖 = (𝑝 + 𝑞)𝑛= 1𝑛 = 1



Independent Pairs of Events

A pair of events A and B belonging to the same 
sample space are said to be independent if  𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑃(𝐵)



PSN

Consider one roll of a fair die with 𝑆 = {1, 2, 3, 4, 5, 6}
Let 𝐴 be the event that an odd number is rolled, i.e., 𝐴 = {1, 3, 5}
Let 𝐵 be the event that the number rolled is at least three, i.e.,𝐵 = {3, 4, 5,6}
Let 𝐶 be the event that the number rolled is a prime, i.e.,𝐶 = {2, 3, 5}
Which pairs of events are independent?



Independent Set of Events

A set of events {𝐴1, 𝐴2,…, 𝐴𝑛} from sample 

space 𝑆 is an independent set of events if 𝑃 𝐴1 ∩ 𝐴2⋯∩ 𝐴𝑛 = 𝑃 𝐴1 𝑃 𝐴2 ⋯𝑃(𝐴𝑛)



Conditional Probability

• Conditional probabilities often play a role when we analyze the average behavior of algorithms. 

• To motivate the notion of conditional probability, consider again the experiment of rolling two 
fair dice D1 and D2. 

• Suppose that you have been informed that the first die came up 2. You now are asked to 
determine the probability that the sum of the two dice is at most 5. 

• This is the conditional probability that the sum of the dice is at most 5, given that the first die 
has come up 2. 

• Let E denote the event that the sum of the two dice is at most 5, i.e., 
E = {(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)} and let F denote the event that the 
first die is a 2, i.e., F = {(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)}

• E contains 10 outcomes and F contains 6 outcomes, so that P(E) = 10/36 = 5/18 and P(F) = 
6/36 = 1/6. 

• Let P(E|F) denote the conditional probability that E occurs given that F has occurred. 

• The condition that D1 comes up 2 amounts to restricting the sample space to 
F = {(2,i)|i  {1, . . . , 6}},  

• This restricted sample space has 6 outcomes. 

• Of these 6 outcomes only the 3 in E  F = {(2,1), (2,2), (2,3)} yield a sum that is at most 5. 
Thus,

 

P(E | F) =
E  F

F
=

3

6
=

1

2
.



Formula for Conditional Probility

Since 
𝐸∩𝐹𝐹 = 𝐸∩𝐹 /|𝑆|𝐹 /|𝑆| = 𝑃(𝐸∩𝐹)𝑃(𝐹) , we may express 𝑃(𝐸|𝐹) in terms of the probabilities of events 𝐸 ∩ 𝐹 and 𝐹 𝑃 𝐸 𝐹 = 𝑃 𝐸 ∩ 𝐹𝑃 𝐹

Substituting 𝑃 𝐸 ∩ 𝐹 = 336 = 112 and 𝑃 𝐹 = 16
yields 𝑃 𝐸|𝐹 = 12 the same result as on the 

previous slide.



PSN. Compute the conditional probability 

that the sum of dice is 2 or 11 given that 

the first die is a 1 or 6.  



Total Probability Theorem

Let 𝐸1, 𝐸2, …, 𝐸𝑛 be events that partition 𝑆 and let 𝐴
be any event in 𝑆. Then𝑃 𝐴 = 𝑃(𝐴|𝐸1)𝑃(𝐸1) + 𝑃(𝐴|𝐸2)𝑃(𝐸2) + ⋯+ 𝑃(𝐴|𝐸𝑛)𝑃(𝐸𝑛)



Bayes Rule

Let 𝐴 and 𝐵 be events in sample space 𝑆. If 

neither 𝑃(𝐴) nor 𝑃(𝐵) is zero, then

𝑃 𝐵 𝐴 = 𝑃 𝐴 𝐵 𝑃 𝐵𝑃 𝐴



Example

• Suppose it is estimated that 10% of a population has a 

certain disease. 

• Tests for this disease are being developed but are not yet 

perfect. In fact, an individual who has the disease may test 

negative. 

• Suppose experience with a particular test shows that 5% of 

the results are actually false negatives-that is, the 

individual actually does have the disease. 

• Also, suppose that 8% of the tests done so far have been 

positive. 

• What is the probability that a sick person will receive a 

false-negative test result?



Solution

Let 𝑆 consist of the population.

Let 𝐴 denote the subset of people who would test positive if 
they took the test.

Let 𝐵 denote the subset of people who have the disease.

We are given that𝑃 𝐴 = 0.08 , 𝑃 𝐵 = 0.10, 𝑃 𝐵 ҧ𝐴 = 0.05
Then 𝑃 ҧ𝐴 = 1 − 𝑃 𝐴 = 0.92. We are interested in the 
probability that a person who is ill tests negative, i.e.,𝑃 ҧ𝐴 𝐵 . By Bayes' Rule𝑃 ҧ𝐴 𝐵 = 𝑃 𝐵 ҧ𝐴 𝑃 ҧ𝐴𝑃 𝐵 = 0.05 0.920.10 = 0.46



Application of Bayes' Rule and the 

Theorem of Total Probability

• Suppose widgets are shipped to a store from three 

different factories 𝐹1, 𝐹2 and 𝐹3 . Suppose the 

percentages of each shipment that are bad are 10%, 8%, 

and 3%, respectively. 

• Suppose further that the percentages of the widgets 

supplied from these factories are 20%, 30%, and 50%, 

respectively.

• Now, suppose a customer selects a 

widget at random and finds that it is bad. 

• What is the probability the widget

came from factory 𝐹2?



Solution
Let 𝐸𝑖 denote the event the widget comes from factory 𝐹𝑖 , 𝑖 = 1, 2, 3. 
We are given𝑃(𝐸1) = 0.2, 𝑃(𝐸2) = 0.3, 𝑃(𝐸3) = 0.5
Let 𝐵 denote the event that a widget selected at random is bad. We 
are also given the conditional probabilities𝑃 𝐵 𝐸1 = 0.1, 𝑃 𝐵 𝐸2 = 0.08, 𝑃 𝐵 𝐸3 = 0.03
We are to determine 𝑃(𝐸2|𝐵). Using the Total Probability Theorem 𝑃 𝐵 = 𝑃(𝐵|𝐸1)𝑃(𝐸1) + 𝑃(𝐵|𝐸2)𝑃(𝐸2) + 𝑃(𝐵|𝐸3)𝑃(𝐸3)0.1 0.2 + 0.08 0.3 + 0.03 0.5 = 0.059
Applying Bayes Rule we obtain𝑃(𝐸2 𝐵 = 𝑃 𝐵 𝐸2 𝑃 𝐸2𝑃 𝐵 = 0.08 0.30.059 = 0.406779661



Discrete Random Variables

A discrete random variable 𝑋 is mapping from 

the sample space 𝑆 to the real numbers.

For example, consider the sample space 𝑆
where the outcomes correspond to rolling two 

dice.  Then a natural random variable is the 

function 𝑅 mapping an outcome to the sum of 

it values, i.e., 𝑅 𝑖, 𝑗 = 𝑖 + 𝑗, 𝑖, 𝑗 ∈ {1,2,3,4,5,6}



Distribution of a Random Variable

The random variable X induces another sample space 

consisting of the range of values that the random variable 

takes.  For example for the random variable R mapping a 

roll of two dice onto their sum, the induced sample space is{2,3, … , 12}
The probability density of the induced sample space 

associated with 𝑋 is called the distribution of 𝑋.  

PSN. Give the distribution for the random variable R

mapping a roll of two dice onto their sum.



How to make a small fortune from gambling?

Start with a large fortune.



Random Variables, Expectation and the 

Binomial Distribution 

Textbook Reading:

Chapter 8, pp. 520-527



Discrete Random Variables

• Recall that a discrete random variable 𝑋 is 

mapping from the sample space 𝑆 to the real 

numbers.

• For example, consider the sample space 𝑆 where 

the outcomes correspond to rolling two dice.  

• Then a natural random variable is the function 𝑅
mapping an outcome to the sum of it values, i.e., 𝑅 𝑖, 𝑗 = 𝑖 + 𝑗, 𝑖, 𝑗 ∈ {1,2,3,4,5,6}



Distribution of a Random Variable

The random variable X induces another sample space consisting of 

the range of values that the random variable takes.  

The probability density of the induced sample space associated with 𝑋 is called the distribution of 𝑋.  

For example for the random variable R mapping a roll of two dice onto 

their sum, the induced sample space is{2,3, … , 12}
The distribution of R is

𝑖 + 𝑗 2 3 4 5 6 7 8 9 10 11 12𝑃(𝑅 = 𝑖 + 𝑗) 136 236 336 436 536 636 536 436 336 236 136



Binomial Distribution

Consider a sample space corresponding to an 𝑛-trial 

Bernoulli process, i.e., the outcomes correspond to 𝑛 trials. where we associate the probability 𝑝 of 

success on each trial and 𝑞 = 1 − 𝑝 of failure

The trials can be represented by flipping a coin 

where the “success” is a head with probability 𝑝 and 

“failure” is a tail with probability 𝑞 = 1 − 𝑝.



Probability of an outcome

The probability of an outcome s𝑝 𝑠 = 𝑝𝑘𝑞𝑛−𝑘
where 𝑘 is the number of successes.  This 

is the probability density function for the 

Binomial Distribution.  



Example of Sample Space for 𝑛 = 4𝑆 = {𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝑇,𝐻𝐻𝑇𝐻,𝐻𝑇𝐻𝐻, 𝑇𝐻𝐻𝐻,𝐻𝐻𝑇𝑇,𝐻𝑇𝐻𝑇,𝐻𝑇𝑇𝐻, 𝑇𝐻𝐻𝑇, 𝑇𝐻𝑇𝐻, 𝑇𝑇𝐻𝐻,𝐻𝑇𝑇𝑇𝑇𝐻𝑇𝑇, 𝑇𝑇𝐻𝑇, 𝑇𝑇𝑇𝐻, 𝑇𝑇𝑇𝑇}
PSN. Verify that 𝑝 𝑠 = 𝑝𝑘𝑞𝑛−𝑘 is a probability 

density function for 𝑆 where 𝑝 = 𝑞 = 12 , i.e., 

show that the probabilities over all the outcomes 

in 𝑆 sum to 1. 



Probability Density Function  

• We now show in general that  𝑝 𝑠 = 𝑝𝑘𝑞𝑛−𝑘
determines a probability density function. 

• To verify this we must show that the sum of the 

probabilities over all the outcomes in 𝑠 ∈ 𝑆 is 1. 

Proof.

Using the binomial theorem 𝑠∈𝑆 𝑝 𝑠 =𝑘=0𝑛 𝐶 𝑛, 𝑘 𝑝𝑘𝑞𝑛−𝑘 = (𝑝 + 𝑞)𝑛= 1𝑛 = 1



Binomial Distribution

Let 𝑋 map an outcome onto the number of successes. 

Then the distribution of 𝑋 is called the Binomial 

Distribution.

For example, for 4 trials flipping a coin𝑋 𝐻𝐻𝐻𝐻 = 4, 𝑋 𝐻𝑇𝑇𝐻 = 2, 𝑋 𝑇𝑇𝑇𝑇 = 0
It follows from the definition of 𝑋 that   𝑃 𝑋 = 𝑘 = 𝑏 𝑘; 𝑛, 𝑝 = 𝐶 𝑛, 𝑘 𝑝𝑘𝑞𝑛−𝑘



Expectation

One of the most important concepts in 

probability theory is that of the expectation 𝐸(𝑋) of a random variable 𝑋 on a (finite) 

sample space 𝑆. The mean or expectation

or expected value of 𝑋 is defined by𝐸(𝑋) =𝑠∈𝑆 𝑋 𝑠 𝑝(𝑠)



Example – Rolling a die𝑆 = 1,2,3,4,5,6𝑅 𝑖 = 𝑖, 𝑖 = 1,2, … , 6
𝐸(𝑅) = 16 1 + 2 + 3 + 4 + 5 + 6 = 216 = 72.



Example– Rolling two dice

Compute expectation of 𝑅 the sum of two dice𝑆 = 1,1 , 1,2 , … , (6,6)𝑅 𝑖, 𝑗 = 𝑖 + 𝑗, 𝑖, 𝑗 = 1,2,… , 6𝐸(𝑅) =136 2 + 3 + 4 + 5 + 6 + 7 + 136 3 + 4 + 5 + 6 + 7 + 8+ 136 4 + 5 + 6 + 7 + 8 + 9 + 136 5 + 6 + 7 + 8 + 9 + 10+ 136 6 + 7 + 8 + 9 + 10 + 11 + 136 7 + 8 + 9 + 10 + 11 + 12= 7



Computing Expectation using Distribution of 

Random Variable

An alternative way to compute expectation, which is 

often easier is using the distribution of the random 

variable 𝐸(𝑋) =𝑥 𝑥𝑃(𝑋 = 𝑥)
PSN.  Use this formula to compute the expectation 

of the sum of two dice and compare to the result 

we derived on the previous slide.



Expectation of Binomial Distribution

Theorem. Suppose 𝑋 is the binomial random 

variable corresponding to a given 𝑛 and 𝑝. Then𝐸(𝑋) = 𝑛𝑝



Proof

𝐸(𝑋) = 𝑘=0𝑛 𝑘𝑃(𝑋 = 𝑘)
𝑘=0𝑛 𝑘𝐶 𝑛, 𝑘 𝑝𝑘𝑞𝑛−𝑘 = 𝑛𝑝

We now verify that latter equality using the binomial 
theorem and calculus.



By the Binomial Theorem(𝑝𝑥 + 𝑞)𝑛= 𝑘=0𝑛 𝐶 𝑛, 𝑘 (𝑝𝑥)𝑘𝑞𝑛−𝑘
Taking the derivative of both sides we obtain𝑛𝑝(𝑝𝑥 + 𝑞)𝑛−1 = 𝑘=0𝑛 𝑘𝐶 𝑛, 𝑘 𝑝𝑘𝑥𝑘−1𝑞𝑛−𝑘
Setting 𝑥 = 1 and using the fact that 𝑝 + 𝑞 = 1 we have𝑛𝑝 = 𝑛𝑝(𝑝1 + 𝑞)𝑛−1 = 𝑘=0𝑛 𝑘𝐶 𝑛, 𝑘 𝑝𝑘𝑞𝑛−𝑘



Total Expectation Theorem

Let 𝐹1, 𝐹2, …, 𝐹𝑛 be events that partition 𝑆 and let 𝑋
be a random variable on 𝑆. Then𝐸(𝑋) = 𝐸(𝑋|𝐹1)𝑃(𝐹1) + 𝐸(𝑋|𝐹2)𝑃(𝐹2) + ⋯+ 𝐸(𝑋|𝐹𝑛)𝑃(𝐹𝑛)



Expectation of sum of random variables

Let 𝑋1, 𝑋2, …, 𝑋𝑛 be any random variables on 𝑆. Then𝐸(𝑋1 + 𝑋2 +⋯+ 𝑋𝑛) = 𝐸(𝑋1) + 𝐸(𝑋2) + ⋯+ 𝐸(𝑋𝑛)



I have a special trick for getting the result I 
want in a coin flip.

It's not perfect, but it works about 50% of the 
time.



Application of Probability Theory to 
Algorithms



Definition of an Algorithm

An algorithm is a finite, nonambiguous sequence of 
steps for solving a problem.

Note. A formal definition of an algorithm requires 
the concept of a Turing Machine.



Two main applications of Probability Theory in 

the Design and Analysis of Algorithms

1) Probabilistic analysis of the computing time of an 

algorithm

2) Probabilistic design of algorithms



Average Computing Time of an Algorithm

• Define the random variable  maps the sample space 𝑆𝑛 of all inputs I of size n onto the computing time of 

the algorithm for that input. The expected computing 

time for an input of size n denoted A(n) is given by  𝐴(𝑛) = 𝐸().
• 𝐴(𝑛) is often referred to as the average computing 

time or average complexity.  

• Often the computing time is measured by counting a 

basic operation, so that (I) is the number of times the 

algorithm performs the basic operation for input I.
4



Formula Average Complexity

Let 𝑝𝑖 denote the number of basic operations 
algorithm performs for an input of size 𝑛, i.e., 𝑝𝑖 =𝑃(𝜏 = 𝑖).  Then

𝐴 𝑛 = 𝑖=𝐵(𝑛)𝑊(𝑛) 𝑖𝑝𝑖
where 𝐵 𝑛 and 𝑊 𝑛 denote the fewest and most 
basic operations performed by the algorithm for an 
input size 𝑛.  They are called the best-case and 
worst-case complexities. 



Example – Linear Search 

function LinearSearch (L[0:n – 1],X)

Input: L[0:n – 1] (a list of size n), X (a search item)

Output: returns index of first occurrence of X in the list, or -1 if X
is not in the list

for i ← 0 to n – 1 do

if X = L[i] then

return(i)

endif

endfor

return(-1)

end LinearSearch

6



Analysis of Computing Time

• The basic operation of LinearSearch is comparison

• The fewest comparisons performed by LinearSearch is 

one comparison when the input X is the first element in 

the list, i.e., 𝐵(𝑛) = 1
• The most it performs is n comparison when X is not in the 

list or occurs only in the last position, i.e., 𝑊(𝑛) = 𝑛. 

• To obtain the average computing time we use the formula

𝐴 𝑛 = 𝑖=𝐵(𝑛)𝑊(𝑛) 𝑖𝑝𝑖 =𝑖=1𝑛 𝑖𝑝𝑖
7



Average Complexity (Computing Time) of 
LinearSearch

• To simplify the discussion of the average behavior of 

LinearSearch, we assume that the search element 𝑋 is in 

the list 𝐿[0: 𝑛 – 1] and is equally likely to be found in any 

of the n positions. 

• Note that 𝑖 comparisons are performed when 𝑋 is found at 

position 𝑖 in the list. Thus, the probability that LinearSearch

performs 𝑖 comparisons is given by 𝑝𝑖 = 1/𝑛. 

• Substituting these probabilities in the formula from 

previous slide we obtain  𝐴 𝑛 =𝑖=1𝑛 𝑖𝑝𝑖 =𝑖=1𝑛 𝑖 1𝑛 = 𝑛 𝑛 + 12 × 1𝑛 = 𝑛 + 12



PSN

Suppose that the search element X is twice as likely 
to be found in the first half of the list as the second 
half.  Assume (1) the size n of the list is even, (2) X
occurs in the list exactly once, (3) there is an equal 
probability of X being found in any position in the 
first half and, (4) there is an equal probability of X
being found in any position in the second half.



Average Complexity of LinearSearch when search 
element X may not occur in list L

• Let p = probability that X is in list L

• Then the probability X is not in L is 1 – p.

• Applying the Total Expectation Theorem

A(n) = E(τ) 

= E(τ | X in L) × P(X in L) + E(τ | X not in L) × P(X not in L)

= 
𝑛 + 12 × 𝑝 + 𝑛 (1 – 𝑝)

The last step involves substituting the formula from the previous

slide when X is in L and substituting n in the case when X is not in L.



Probabilistic Algorithms

• The algorithms that we have considered so far are 
all deterministic.

• They leave nothing to chance.  Running a 
deterministic algorithm time after time with the 
same input will produce identical results each time.  

• On the other hand, a probabilistic algorithm 
contains steps that make random choices by 
invoking a random (or pseudorandom) number 
generator. 

• Thus, they are subject to the laws of chance.  In 
particular, a probabilistic algorithm can perform 
differently for two runs with the same input.



Four Main Categories of Probabilistic Algorithms

• Randomizations of deterministic algorithms

• Monte Carlo algorithms

• Las Vegas algorithms 

• Numerical probabilistic algorithms



Description of Types of Probabilistic Algorithms

1. Randomization of a deterministic algorithm results by replacing 

certain steps that made canonical choices by steps that make these 

choices in some random fashion. Randomization is done to break the 

connection between a particular input and worst-case behavior, and 

thereby homogenize the expected behavior of inputs to the 

algorithm.

2. Monte Carlo algorithms often produce solutions very quickly, but 

only guarantee correctness with high probability. 

3. A Las Vegas algorithm never outputs an incorrect solution but has 

some probability of reporting a failure to produce a solution. 

4. Numerical probabilistic algorithms were among the first examples 

of introducing randomness into the design of algorithms. A classic 

example is the estimation of  obtained by throwing darts at a 

square and recording how many darts land inside a circle inscribed in 

the square.



Advantage of Probabilistic Algorithms

• In practice, obtaining solutions with high 
probability is almost as satisfactory as the 
foolproof guarantee provided by a deterministic 
algorithm. 

• For many important problems, such as prime 
testing, the most efficient algorithms currently 
known for their solutions are probabilistic.



Expected Number of Basic Operations

• Because running the algorithm twice with the same input I

may result in a different number of basic operations being 

performed, τ(I) is no longer well defined. 

• Instead, what is relevant is the expected number, τexp(I), of 

basic operations performed by the algorithm for input I 

with respect to the random choices made by the algorithm. 

• As with any expectation, if we run the algorithm many 

times with fixed input I, then we can expect that the 

algorithm performs τexp(I) basic operations on average. If 

the algorithm performs many random choices, then even 

for a single run we can expect that the number of basic 

operations performed is very close to τexp(I). 



Alternate Definition of Algorithm 



Shannon Entropy

“Information is the resolution of
uncertainty” Shannon



Claude E. Shannon, 1916-2001
1937 Masters thesis, EE Dept, MIT

A symbolic analysis of relay and switching 

circuits

Introduced application of Boolean 

algebra to logic circuits, and vice versa. 

Very influential in digital circuit design.

”Most important Masters thesis of the century”

1940 PhD, Math Dept, MIT

An algebra for theoretical genetics

To analyze the dynamics of Mendelian 

populations.

Joined Bell Labs in 1940.

”A mathematical theory of cryptography” 1945/1949

“A mathematical theory of communication” 1948

2



Seminal Publications of Shannon

In 1948, Claude E. Shannon published the paper A Mathematical 

Theory of Communication, which is seen as the foundation of 

modern information theory.

In 1949, Shannon published Communication Theory of Secrecy 

Systems which relates cryptography to information theory, and 

should be seen as the foundation of modern cryptography.

Both papers derive from a technical report, A Mathematical 

Theory of Cryptography, written by Shannon in 1945. In this 

report, Shannon defined, and mathematically proved, perfect 

secrecy.

https://evervault.com/papers/shannon-communication.pdf
https://evervault.com/papers/shannon-secrecy.pdf
https://evervault.com/papers/shannon.pdf


Measuring Information
Shannon’s definition of the information obtained on being told

the outcome 𝑥𝑖 of a probabilistic experiment X:𝐼 𝑋 = 𝑥𝑖 = log2( 1𝑝𝑋 (𝑥𝑖 ))
where 𝑝𝑋 (𝑥𝑖 ) is the probability of the event 𝑋 = 𝑥𝑖.
The unit of measurement (when the log is base-2) is the bit

(binary information unit --- not the same as binary digit!).

1 bit of information corresponds to

pX (xi ) = 0.5. So, for example, when the 

outcome of a fair coin toss is revealed to

us, we have received 1 bit of information.

3



4

Examples

We’re drawing cards at random from a standard 52-card deck.

Elementary outcome: card that’s drawn, probability 1/52,  

information log2(52/1) = 5.7 bits. For an event comprising M such

(mutually exclusive) outcomes, the probability is M/52.

Q. If I tell you the card is a spade , how many bits of 

information have you received?

A. Out of 52 equally probable cards, M = 13 are spades , so 

probability of drawing a spade is 13/52, and the amount of 

information received is log2(52/13) = 2 bits.

This makes sense, we can encode one of the 4 (equally probable) 

suits using 2 binary digits, e.g.,

00 = , 01 = , 10 = , 11 = . 

Q. If instead I tell you the card is a seven, how much info? 

A. N = 52, M = 4, so info = log2(52/4) = log2(13) = 3.7 bits



5

Properties of Information definition

• A lower−probability outcome yields higher information

• A highly informative outcome does not necessarily mean a 

more valuable outcome, only a more surprising outcome, i.e., 

there's no intrinsic value being assessed (can think of 

information as degree of surprise).

• Often used fact: The information in independent events is 

additive.



Expected Information as 

Uncertainty or Entropy
Consider a discrete random variable X, which may represent the
set of possible symbols to be transmitted at a particular time,

taking possible values x1, x2,..., x N , with respective probabilities

pX (x1 ), pX (x2 ),..., pX (x N ) .

The entropy H (X) of X is the expected (or mean or average) value of

the information obtained by learning the outcome of X :

When all the pX (x i ) are equal (with value 1 /N), then

H (X) = log2 N or N = 2H (X )

This is the maximum attainable value!

𝐻 𝑋 =𝑝𝑋 𝑥𝑖 𝐼(𝑋 = 𝑥𝑖) =𝑖=1𝑁 𝑝𝑋 𝑥𝑖 log2( 1𝑝𝑋 (𝑥𝑖 ))



e.g., Binary entropy function h(p)

Heads (or C = 1) with 

probability p

Tails (or C = 0) with

probability 1 - p

h (p)

p

1.0

0.5

1.0

0

0 0.5 1.0

H(C)= −plog2 p−(1−p)log2(1−p) = h(p)

7



Connection to (Binary) Coding

Suppose p=1/1024, i.e., very small probability of getting a Head,

typically one Head in 1024 trials. Then 

ℎ 𝑝 = ( 11024) log2 10241 + 10231024 log2 10241023 = .0012
.0012 bits of uncertainty or information per trial on average

So using 1024 binary digits (C = 0 or 1) to code the results of 1024 

tosses of this particular coin seems inordinately wasteful, i.e., 1

binary digit per trial.

Q. Can we get closer to an average of .0112 binary digits/trial?

A. Yes!

Binary coding: Mapping source symbols to binary digits.



9

Significance of Entropy
Entropy (in bits) tells us the average amount of information (in bits)

that must be delivered in order to resolve the uncertainty about

the outcome of a trial. This is a lower bound on the number of

binary digits that must, on the average, be used to encode our

messages.

If we send fewer binary digits on average, the receiver will have 

some uncertainty about the outcome described by the message.

If we send more binary digits on average, we’re wasting the

capacity of the communications channel by sending binary

digits we don’t have to.

Achieving the entropy lower bound is the “gold standard” for an 

encoding (at least from the viewpoint of information compression).



10

Fixed-length Encodings
An obvious choice for encoding equally probable outcomes is

to choose a fixed-length code that has enough sequences to

encode the necessary information

• 96 printing characters → 7-”bit” ASCII

• Unicode characters → UTF-16

• 10 decimal digits → 4-”bit” BCD (binary coded decimal)

Fixed-length codes have some advantages:

• They are “random access” in the sense that to decode the

nth message symbol one can decode the nth fixed-length

sequence without decoding sequence 1 through n – 1.

• Table lookup suffices for encoding and decoding



11

choicei pi log2(1/pi)“A” 1 / 3 1.58 bits“B ” 1 / 2 1 bit“C” 1 / 1 2 3.58 bits“D” 1 / 1 2 3.58 bits

The expected information content in a choice is given by the 
entropy:

= (.333)(1.58) + (.5)(1) + (2)(.083)(3.58) = 1.626 bits

Can we find an encoding where transmitting 1000 choices 
requires 1626 binary digits on the average?

The “natural” fixed-length encoding uses two binary digits for 
each choice, so transmitting the results of 1000 choices requires 
2000 binary digits.

Now consider:



Variable-length encodings

choicei pi encoding“A” 1 / 3 10“B ” 1 / 2 0“C” 1 / 1 2 1 1 0“D” 1 / 1 2 1 1 1

011010010111

12

(David Huffman, in term paper for MIT graduate class, 1951)

Use shorter bit sequences for high probability choices, 
longer sequences for less probable choices

BC A BA D

Expected length
=(.333)(2)+(.5)(1)+(2)(.083)(3)

= 1.666 bits0 1

B 0 1

A
Transmitting 1000 
choices takes an 
average of 1666 bits… 
better but not optimal

0 1

C D
Huffman Decoding Tree

Note: The symbols are at the leaves of the tree;
necessary and sufficient for instantaneously decodability.



Why is it that programmers always confuse Halloween with Christmas?

Because 31 OCT = 25 DEC


