bernoulli variable
-
Binary variable
-
\(X(v) = \begin{cases} 1 \text{ if } v=a_1 \\ 0 \text{ if } v = a_2\end{cases}\)
-
PMF = \(P(X = x) = f(x) = \begin{cases}\rho_1 \text{ if } x = 1 \\ \rho_0 \text{ if
} x = 0\end{cases}\)
Mean and Variance
Sample mean and variance
Binomial Distribution: Number of Occurrences
Multivariate Bernoulli Variable
Mean
Sample Mean
Covariance Matrix
Bivariate Analysis
mean
Sample mean
Sample Covariance Matrix
Attribute Dependence: Contingency Analysis
Contingency Table
-
\(m_1 \times m_2\) matrix of observed counts \(n_{ij}\) for all pairs of values
-
\(n_{ij}\) is the sum of objects that fit both i and j categories (shortjk)
\(X^2\) Statistic and Hypothesis Testing
-
expected frequency \(= e_{ij} = n \cdot \hat\rho_{ij} = n \cdot \hat\rho^1_i \cdot \hat\rho^2_j = n
\cdot \frac{n^1_in^2_j}{n}\)
-
\(X^2 = \displaystyle\sum\limits^{m_1}_{i=1}\displaystyle\sum\limits^{m_2}_{j=1}\frac{(n_{ij}-e_{ij})^2}{e_{ij}}\)
-
degrees of freedom = dof = q = S-t+1 = \((m_1-1)(m_2-1)\)
-
m = # of columns or # rows respectively
-
S = number of cells in contingency table (excluding margins)
-
t = cells in margins
-
on parameter is removed twice, so add 1 degree of freedom
-
\(f(x|q) = \frac{1}{2^{q/2}\Gamma(q/2)} x^{\frac{q}{2}-1}e^{-\frac{x}{2}\)
-
\(\Gamma(k>0) = \displaystyle\int\limits^\infty_0x^{k-1}e^{-x}dx\)
p-value
-
if p-value < \(\alpha\) then reject null hypothesis
-
if \(X^2 > z\) where \(pvalue(z) = \alpha\) then reject null hypothesis \(H_0\)
Multivariate Analysis
Covariance matrix
Multiway Contingency Analysis
\(X^2\) test