lec12

Bayes classifier

  • \(x_i \in \mathbb R^d\)
  • m: full bayes classifer
    • \( P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}\)
    • \(m(x) = \max\{P(c_i|x)\}\)
    • \(P(c_i|x) = \frac{P(x|c_i) \cdot P(c_i)}{\displaystyle \sum\limits^k_{i=1} P(x|c_i) P(c_i)}\)
    • \(P(x|c_i) = P((x_1, x_2 ...)|c_i)\)

Numerical

  • O(dd) time

Categorical

estimate number of times each element occurs in D divided by the length of D

  • worse than numerical
  • O(2d) if each attribute only has 2 values

Naive bayes

  • full bayes is extremely inefficient (exponential time)
  • asuume that all attrubtes are independant
  • \(P(x|c_i) = \prod P(x_j|c_i)\)
  • compute mean, variance for each dimension to estimate probability
  • linear in d dimensions O(d)