All-Slides
Set Theory
Union
\(A\) |
\(B\) |
\(A \cup B\) |
T |
T |
T |
T |
F |
T |
F |
T |
T |
F |
F |
F |
Intersection
\(A\) |
\(B\) |
\(A \cup B\) |
T |
T |
T |
T |
F |
F |
F |
T |
F |
F |
F |
F |
Difference
\(A\) |
\(B\) |
\(A \cup B\) |
T |
T |
T |
T |
F |
T |
F |
T |
T |
F |
F |
F |
Symmetric difference
- \(S = A \bigoplus B\)
- \((a \in S \iff (a \in A \quad \text{and} \quad a \ni B)\)
\(A\) |
\(B\) |
\(A \cup B\) |
T |
T |
F |
T |
F |
T |
F |
T |
T |
F |
F |
F |
Demorgans law
\(\neg (A \cup B) = \neg A \cap \neg B\)
Principle of Inclusion-Exclusion
\(|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|\)
Proof Techniques
- Counterexample
- Contradiction
- Induction
- Trees
Trees
- n nodes
- n-1 edges
- leaf nodes = intermediate nodes + 1
- Total nodes = intermediate nodes + leaf nodes
power sets
- \(A= \{a, b, c\}\)
- \(P(A) = \varnothing , \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\)
- \(|P(A)| = 2^{|A|} = 2^3 = 8\)
Propositional logic
- All F = contradiction
- All T = Tautology
- CNF conjunction of all disjunction clauses, unsatisfiable when all combinations of clauses are present
- DNF disjunction of all conjunction clauses
- Logic
NP and NP-completeness
- P = problem that can be solved in polynomial time
- NP = non-deterministic polynomial (unknown if it can be solved in polynomial time)
- NP-complete = any NP problem A can be reduced to problem B
Functions and relations
- One to one -> (injective)
- Onto () -> surjective
- One to one and Onto -> Bijective
- Density
- Equivalence relations
- Reflexive, \(a, a \in R \: \text{for every a in A}\)
- Symmetric, \((b, a \in R\: \text{ whenver} \: a, b \in R\)
- Transitive, \((a, b) \in R \text{ and } (b, c) \in R \text{ then } (a, c) \in R \text{ where } a, b, c \in A \)
- Asymmetric, \((a, b) \in R \text{ implies } (b, a) \not\in R\)
- AntiSymmetric, assymetric except for the case \((a, b) \in R \rightarrow (b, a) \in R\) where \(b\) is equal to \(a\)
- Poset (partially ordered set)
- reflexive
- Antisymmetric
- Transitive
Mod Arithmetic
- \((x + y) \mod k = (x \mod k \quad + \quad y \mod k) \mod k \)
- \(b^{n-1} = 1 \mod n \)